Abstract The combined effects of compact TiO2(c‐TiO2) electron‐transport layer (ETL) are investigated without and with mesoscopic TiO2(m‐TiO2) on top, and without and with an iodine‐terminated silane self‐assembled monolayer (SAM), on the mechanical behavior, opto–electronic properties, photovoltaic (PV) performance, and operational‐stability of solar cells based on metal‐halide perovskites (MHPs). The interfacial toughness increases almost threefold in going from c‐TiO2without SAM to m‐TiO2with SAM. This is attributed to the synergistic effect of the m‐TiO2/MHP nanocomposite at the interface and the enhanced adhesion afforded by the iodine‐terminated silane SAM. The combination of m‐TiO2and SAM also offers a significant beneficial effect on the photocarriers extraction at the ETL/MHP interface, resulting in perovskite solar cells (PSCs) with power‐conversion efficiency (PCE) of over 24% and 20% for 0.1 and 1 cm2active areas, respectively. These PSCs also have exceptionally long operational‐stability lives: extrapolatedT80 (duration at 80% initial PCE retained) is ≈18 000 and 10 000 h for 0.1 and 1 cm2active areas, respectively.Postmortemcharacterization and analyses of the operational‐stability‐tested PSCs are performed to elucidate the possible mechanisms responsible for the long operational‐stability. 
                        more » 
                        « less   
                    
                            
                            Dual‐Interface‐Reinforced Flexible Perovskite Solar Cells for Enhanced Performance and Mechanical Reliability
                        
                    
    
            Abstract Two key interfaces in flexible perovskite solar cells (f‐PSCs) are mechanically reinforced simultaneously: one between the electron‐transport layer (ETL) and the 3D metal‐halide perovskite (MHP) thin film using self‐assembled monolayer (SAM), and the other between the 3D‐MHP thin film and the hole‐transport layer (HTL) using an in situ grown low‐dimensional (LD) MHP capping layer. The interfacial mechanical properties are measured and modeled. This rational interface engineering results in the enhancement of not only the mechanical properties of both interfaces but also their optoelectronic properties holistically. As a result, the new class of dual‐interface‐reinforced f‐PSCs has an unprecedented combination of the following three important performance parameters: high power‐conversion efficiency (PCE) of 21.03% (with reduced hysteresis), improved operational stability of 1000 hT90(duration at 90% initial PCE retained), and enhanced mechanical reliability of 10 000 cyclesn88(number of bending cycles at 88% initial PCE retained). The scientific underpinnings of these synergistic enhancements are elucidated. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2102210
- PAR ID:
- 10376484
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 34
- Issue:
- 47
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Flexible perovskite solar cells (f‐PSCs) have attracted great attention due to their promising commercial prospects. However, the performance off‐PSCs is generally worse than that of their rigid counterparts. Herein, it is found that the unsatisfactory performance of planar heterojunction (PHJ)f‐PSCs can be attributed to the undesirable morphology of electron transport layer (ETL), which results from the rough surface of the flexible substrate. Precise control over the thickness and morphology of ETL tin dioxide (SnO2) not only reduces the reflectance of the indium tin oxide (ITO) on polyethylene 2,6‐naphthalate (PEN) substrate and enhances photon collection, but also decreases the trap‐state densities of perovskite films and the charge transfer resistance, leading to a great enhancement of device performance. Consequently, thef‐PSCs, with a structure of PEN/ITO/SnO2/perovskite/Spiro‐OMeTAD/Ag, exhibit a power conversion efficiency (PCE) up to 19.51% and a steady output of 19.01%. Furthermore, thef‐PSCs show a robust bending resistance and maintain about 95% of initial PCE after 6000 bending cycles at a bending radius of 8 mm, and they present an outstanding long‐term stability and retain about 90% of the initial performance after >1000 h storage in air (10% relative humidity) without encapsulation.more » « less
- 
            Iodine-terminated self-assembled monolayer (I-SAM) was used in perovskite solar cells (PSCs) to achieve a 50% increase of adhesion toughness at the interface between the electron transport layer (ETL) and the halide perovskite thin film to enhance mechanical reliability. Treatment with I-SAM also increased the power conversion efficiency from 20.2% to 21.4%, reduced hysteresis, and improved operational stability with a projected T80 (time to 80% initial efficiency retained) increasing from ~700 hours to 4000 hours under 1-sun illumination and with continuous maximum power point tracking. Operational stability–tested PSC without SAMs revealed extensive irreversible morphological degradation at the ETL/perovskite interface, including voids formation and delamination, whereas PSCs with I-SAM exhibited minimal damage accumulation. This difference was attributed to a combination of a decrease in hydroxyl groups at the interface and the higher interfacial toughness.more » « less
- 
            Conjugated molecules have been typically utilized as either hole or electron extraction layers to boost the device performance of perovskite solar cells (PSCs), formed from three-dimensional (3D) perovskites, due to their high charge carrier mobility and electrical conductivity. However, the passivating role of conjugated molecules in creating two-dimensional (2D) perovskites has rarely been reported. In this study, we report novel conjugated aniline 3-phenyl-2-propen-1-amine (PPA) based 2D perovskites and further demonstrate efficient and stable PSCs containing a (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film (where MA is CH 3 NH 3 + ). The (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film possesses superior crystallinity and passivated trap states, resulting in enhanced charge transport and suppressed charge carrier recombination compared to those of a 3D MAPbI 3 thin film. As a result, PSCs containing the (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film exhibit a power conversion efficiency (PCE) of 21.98%, which is approximately a 25% enhancement compared to that of the MAPbI 3 thin film. Moreover, un-encapsulated PSCs containing the (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film retain 50% of their initial PCE after 1200 hours in an ambient atmosphere (25 °C, and 30 ± 10 humidity), whereas PSCs with the 3D MAPbI 3 thin film show significant degradation after 100 hours and a degradation of more than 50% of their original PCE after 500 hours. These results demonstrate that the incorporation of conjugated molecules as organic spacer cations to create 2D perovskites on top of 3D perovskites is an effective way to approach high-performance PSCs.more » « less
- 
            Abstract Surface passivation of perovskite solar cells (PSCs) using a low‐cost industrial organic pigment quinacridone (QA) is presented. The procedure involves solution processing a soluble derivative of QA,N,N‐bis(tert‐butyloxycarbonyl)‐quinacridone (TBOC‐QA), followed by thermal annealing to convert TBOC‐QA into insoluble QA. With halide perovskite thin films coated by QA, PSCs based on methylammonium lead iodide (MAPbI3) showed significantly improved performance with remarkable stability. A PCE of 21.1 % was achieved, which is much higher than 18.9 % recorded for the unmodified devices. The QA coating with exceptional insolubility and hydrophobicity also led to greatly enhanced contact angle from 35.6° for the pristine MAPbI3thin films to 77.2° for QA coated MAPbI3thin films. The stability of QA passivated MAPbI3perovskite thin films and PSCs were significantly enhanced, retaining about 90 % of the initial efficiencies after more than 1000 hours storage under ambient conditions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
