skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Molecular Determinants of Efficient Cobalt-Substituted Hemoprotein Production in E. coli
Exchanging the native iron of heme for other metals yields artificial metalloproteins with new properties for spectroscopic studies and biocatalysis. Recently, we reported a method for the biosynthesis and incorporation of a non-natural metallocofactor, cobalt protoporphyrin IX (CoPPIX), into hemoproteins using the common laboratory strain Escherichia coli BL21(DE3). This discovery inspired us to explore the determinants of metal specificity for metallocofactor biosynthesis in E. coli. Herein, we report detailed kinetic analysis of the ferrochelatase responsible for metal insertion, EcHemH (E. coli ferrochelatase). This enzyme exhibits a small, less than 2-fold preference for Fe2+ over the non-native Co2+ substrate in vitro. To test how mutations impact EcHemH, we used a surrogate metal specificity screen to identify variants with altered metal insertion preferences. This engineering process led to a variant with an ∼30-fold shift in specificity toward Co2+. When assayed in vivo, however, the impact of this mutation is small compared to the effects of alteration of the external metal concentrations. These data suggest that incorporation of cobalt into PPIX is enabled by the native promiscuity of EcHemH coupled with BL21’s impaired ability to maintain transition-metal homeostasis. With this knowledge, we generated a method for CoPPIX production in rich media, which yields cobalt-substituted hemoproteins with >95% cofactor purity and yields comparable to standard expression protocols for the analogous native hemoproteins.  more » « less
Award ID(s):
2237213
PAR ID:
10478230
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Synthetic Biology
ISSN:
2161-5063
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Semrau, Jeremy D (Ed.)
    ABSTRACT Escherichia coliis a promising subject for globally coordinated surveillance of antimicrobial resistance (AMR) in water environments due to its clinical relevance and widespread use as an indicator of fecal contamination. Cefotaxime-resistantE. coliwas recently evaluated favorably for this purpose by the World Health Organization TriCycle Protocol, which specifies tryptone bile x-glucuronide (TBX) medium and incubation at 35°C. We assessed comparability with the U.S. Environmental Protection Agency-approved method forE. coliquantification, which uses membrane-thermotolerantE. coli(mTEC) agar and incubation at 44.5°C, in terms of recovery ofE. coliand cefotaxime-resistantE. colifrom wastewater influent and surface waters. TotalE. coliconcentrations in wastewater influent were 106–108CFU/100 mL, while cefotaxime-resistantE. coliwere ~100-fold lower. TotalE. coliin surface waters were ~102CFU/100 mL, and cefotaxime-resistant isolates were near the limit of detection (0.4 CFU/100 mL). Total and putative cefotaxime-resistantE. coliconcentrations did not differ significantly between media or by incubation method; however, colonies isolated on mTEC were more frequently confirmed to species (97.1%) compared to those from TBX (92.5%). Incubation in a water bath at 44.5°C significantly decreased non-specific background growth and improved confirmation frequency on both media (97.4%) compared to incubation at 35°C (92.3%). This study helps to advance globally coordinated AMR in water environments and suggests that the TriCycle Protocol is adaptable to other standard methods that may be required in different locales, while also offering a means to improve specificity by decreasing the frequency of false-positive identification of cefotaxime-resistantE. coliby modifying incubation conditions.IMPORTANCEAs antibiotic-resistant bacteria in water environments are increasingly recognized as contributors to the global antibiotic resistance crisis, the need for a monitoring subject that captures antibiotic resistance trends on a global scale increases. The World Health Organization TriCycle Protocol proposes the use of cefotaxime-resistantEscherichia coliisolated on tryptone bile x-glucuronide agar. The U.S. Environmental Protection Agency (USEPA) criteria for safe recreational waters also useE. colias an indicator but specify the use of mTEC agar at a higher incubation temperature (44.5°C vs 35°C). We assessed the comparability of these methods for isolating total and cefotaxime-resistantE. coli, finding overall good agreement and performance, but significantly higher specificity towardE. coliselection with the use of the USEPA incubation protocol and mTEC agar. This study is the first to directly compare these methods and provides evidence that the methods may be used interchangeably for global surveillance of antibiotic resistance in the environment. 
    more » « less
  2. Abstract Modular co‐culture engineering is an emerging approach for biosynthesis of complex natural products. In this study, microbial co‐cultures composed of two and threeEscherichia colistrains, respectively, are constructed for de novo biosynthesis of flavonoid acacetin, a value‐added natural compound possessing numerous demonstrated biological activities, from simple carbon substrate glucose. To this end, the heterologous biosynthetic pathway is divided into different modules, each of which is accommodated in a dedicatedE. colistrain for functional expression. After the optimization of the inoculation ratio between the constituent strains, the engineered co‐cultures show a 4.83‐fold improvement in production comparing to the mono‐culture controls. Importantly, cultivation of the three‐strain co‐culture in shake flasks result in the production of 20.3 mg L−1acacetin after 48 h. To the authors' knowledge, this is the first report on acacetin de novo biosynthesis in a heterologous microbial host. The results of this work confirm the effectiveness of modular co‐culture engineering for complex flavonoid biosynthesis. 
    more » « less
  3. Rubisco catalyses the first step in carbon fixation and is a strategic target to improve photosynthetic efficiency. In plants, Rubisco is composed of eight large and eight small subunits and its biogenesis requires multiple chaperones. We optimised a system to produce tobacco Rubisco in Escherichia coli by co-expressing chaperones in auto-induction medium. We successfully assembled tobacco Rubisco in E. coli with each small subunit that is normally encoded by the nuclear genome. Even though each enzyme carries only a single type of small subunit in E. coli, the enzymes exhibit carboxylation kinetics very similar to that of the native Rubisco. Tobacco Rubisco assembled with a recently discovered trichome small subunit has a higher catalytic rate and a lower CO2 affinity than those assembled with other small subunits. Our E. coli expression system will allow probing of features of both subunits of Rubisco that affect its kinetic properties. 
    more » « less
  4. Abstract Converting renewable feedstocks to aromatic compounds using engineered microbes offers a robust approach for sustainable, environment‐friendly, and cost‐effective production of these value‐added products without the reliance on petroleum. In this study, rationally designedE. coli–E. colico‐culture systems were established for converting glycerol to 3‐hydroxybenzoic acid (3HB). Specifically, the 3HB pathway was modularized and accommodated by two metabolically engineeredE. colistrains. The co‐culture biosynthesis was optimized by using different cultivation temperatures, varying the inoculum ratio between the co‐culture strains, recruitment of a key pathway intermediate transporter, strengthening the critical pathway enzyme expression, and adjusting the timing for inducing pathway gene expression. Compared with theE. colimono‐culture, the optimized co‐culture showed 5.3‐fold improvement for 3HB biosynthesis. This study demonstrated the applicability of modular co‐culture engineering for addressing the challenges of aromatic compound biosynthesis. 
    more » « less
  5. Abstract Beta-hydroxy non-standard amino acids (β-OH-nsAAs) have utility as small molecule drugs, precursors for beta-lactone antibiotics, and building blocks for polypeptides. While the L-threonine transaldolase (TTA), ObiH, is a promising enzyme for β-OH-nsAA biosynthesis, little is known about other natural TTA sequences. We ascertained the specificity of the TTA enzyme class more comprehensively by characterizing 12 candidate TTA gene products across a wide range (20-80%) of sequence identities. We found that addition of a solubility tag substantially enhanced the soluble protein expression level within this difficult-to-express enzyme family. Using an optimized coupled enzyme assay, we identified six TTAs, including one with less than 30% sequence identity to ObiH that exhibits broader substrate scope, two-fold higher L-Threonine (L-Thr) affinity, and five-fold faster initial reaction rates under conditions tested. We harnessed these TTAs for first-time bioproduction of β-OH-nsAAs with handles for bio-orthogonal conjugation from supplemented precursors during aerobic fermentation of engineeredEscherichia coli, where we observed that higher affinity of the TTA for L-Thr increased titer. Overall, our work reveals an unexpectedly high level of sequence diversity and broad substrate specificity in an enzyme family whose members play key roles in the biosynthesis of therapeutic natural products that could benefit from chemical diversification. 
    more » « less