skip to main content


Title: Estimating Profiles of Dissipation Rate in the Upper Ocean Using Acoustic Doppler Measurements Made from Surface-Following Platforms
Abstract

High-resolution profiles of vertical velocity obtained from two different surface-following autonomous platforms, Surface Wave Instrument Floats with Tracking (SWIFTs) and a Liquid Robotics SV3 Wave Glider, are used to compute dissipation rate profilesϵ(z) between 0.5 and 5 m depth via the structure function method. The main contribution of this work is to update previous SWIFT methods to account for bias due to surface gravity waves, which are ubiquitous in the near-surface region. We present a technique where the data are prefiltered by removing profiles of wave orbital velocities obtained via empirical orthogonal function (EOF) analysis of the data prior to computing the structure function. Our analysis builds on previous work to remove wave bias in which analytic modifications are made to the structure function model. However, we find the analytic approach less able to resolve the strong vertical gradients inϵ(z) near the surface. The strength of the EOF filtering technique is that it does not require any assumptions about the structure of nonturbulent shear, and does not add any additional degrees of freedom in the least squares fit to the model of the structure function. In comparison to the analytic method,ϵ(z) estimates obtained via empirical filtering have substantially reduced noise and a clearer dependence on near-surface wind speed.

 
more » « less
Award ID(s):
1853291
PAR ID:
10478387
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Atmospheric and Oceanic Technology
Volume:
40
Issue:
12
ISSN:
0739-0572
Format(s):
Medium: X Size: p. 1571-1589
Size(s):
p. 1571-1589
Sponsoring Org:
National Science Foundation
More Like this
  1. Intraseasonal modes of atmospheric variability over the Northern Hemisphere (NH) midlatitudes in boreal summer are identified via an empirical orthogonal function (EOF) analysis of the daily 10–90-day bandpass-filtered 250-hPa streamfunction for the period of 1950–2016. The first two EOF modes are characterized, respectively, by (i) a single-signed streamfunction anomaly that extends across the NH and (ii) a regional dipole structure with centers over the Aleutian Islands and northeastern Pacific. The third EOF mode (EOF-3) is a quasi-stationary wave train over the Pacific–North American sector with an equivalent barotropic structure in the vertical. EOF-3 is associated with a northwest–southeast oriented anomalous precipitation dipole over the United States. A nonmodal instability analysis of the boreal summer climatological flow in terms of the 250-hPa streamfunction reveals that one of the top “optimal mode” disturbances mimicking the EOF-3 structure grows from an initial precursor disturbance over East Asia through extracting kinetic energy from background flow and attains its maximum amplitude in around nine days. An additional lag regression analysis illustrates that anomalous latent heating associated with cloud and precipitation formation over East Asia is responsible for generating the precursor disturbance for the EOF-3-like optimal mode. This result suggests the existence of an important connection between the hydrological cycles of East Asia and North America, which is dynamically intrinsic to the boreal summer upper-tropospheric flow. Knowledge of such a connection will help us better understand and model hydroclimate variability over these two continents.

     
    more » « less
  2. Abstract

    High-spatial-resolution observations of CO isotopologue line emission in protoplanetary disks at mid-inclinations (≈30°–75°) allow us to characterize the gas structure in detail, including radial and vertical substructures, emission surface heights and their dependencies on source characteristics, and disk temperature profiles. By combining observations of a suite of CO isotopologues, we can map the two-dimensional (r,z) disk structure from the disk upper atmosphere, as traced by CO, to near the midplane, as probed by less abundant isotopologues. Here, we present high-angular-resolution (≲0.″1 to ≈0.″2; ≈15–30 au) observations of CO,13CO, and C18O in either or bothJ= 2–1 andJ= 3–2 lines in the transition disks around DM Tau, Sz 91, LkCa 15, and HD 34282. We derived line emission surfaces in CO for all disks and in13CO for the DM Tau and LkCa 15 disks. With these observations, we do not resolve the vertical structure of C18O in any disk, which is instead consistent with C18O emission originating from the midplane. Both theJ= 2–1 andJ= 3–2 lines show similar heights. Using the derived emission surfaces, we computed radial and vertical gas temperature distributions for each disk, including empirical temperature models for the DM Tau and LkCa 15 disks. After combining our sample with literature sources, we find that13CO line emitting heights are also tentatively linked with source characteristics, e.g., stellar host mass, gas temperature, disk size, and show steeper trends than seen in CO emission surfaces.

     
    more » « less
  3. Abstract

    A high‐resolution model in conjunction with realistic background wind and temperature profiles has been used to simulate gravity waves (GWs) that were observed by an atmospheric radar at Syowa Station, Antarctica on 18 May 2021. The simulation successfully reproduces the observed features of the GWs, including the amplitude of vertical wind disturbances in the troposphere and vertical fluxes of northward momentum in the lower stratosphere. In the troposphere, ship‐wave responses are seen along the coastal topography, while in the stratosphere, critical‐level filtering due to the directional shear causes significant change of the wave pattern. The simulation shows the multi‐layer structure of small‐scale turbulent vorticity around the critical level, where turbulent energy dissipation rates estimated from the radar spectral widths were large, indicative of GW breaking. Another interesting feature of the simulation is a wave pattern with a horizontal wavelength of about 25 km, whose phase lines are aligned with the front of turbulent wake downwind of a hydraulic jump that occurs over steep terrain near the coastline. It is suggested that the GWs are likely radiated from the adiabatic lift of an airmass along an isentropic surface hump near the ground, which explains certain features of the observed GWs in the lower stratosphere.

     
    more » « less
  4. Abstract

    Characteristic patterns of precipitation-associated tropical intraseasonal oscillations, including the Madden–Julian oscillation (MJO) and boreal summer intraseasonal oscillation (BSISO), are identified using local empirical orthogonal function (EOF) analysis of the Tropical Rainfall Measuring Mission (TRMM) precipitation data as a function of the day of the year. The explained variances of the EOF analysis show two peaks across the year: one in the middle of the boreal winter corresponding to the MJO and the other in the middle of summer corresponding to the BSISO. Comparing the fractional variance indicates that the BSISO is more coherent than the MJO during the TRMM period. Similar EOF analyses with the outgoing longwave radiation (OLR) confirm this result and indicate that the BSISO is less coherent before the TRMM era (1979–98). In contrast, the MJO exhibits much less decadal variability. A precipitation-based index for tropical intraseasonal oscillation (PII) is derived by projecting bandpass-filtered precipitation anomalies to the two leading EOFs as a function of day of the year. A real-time version that approximates the PII is further developed using precipitation anomalies without any bandpass filtering. It is further shown that this real-time PII index may be used to diagnose precipitation in the subseasonal forecasts.

     
    more » « less
  5. Abstract

    Multiyear turbulence measurements from oceanographic moorings in equatorial Atlantic and Pacific cold tongues reveal similarities in deep cycle turbulence (DCT) beneath the mixed layer (ML) and above the Equatorial Undercurrent (EUC) core. Diurnal composites of turbulence kinetic energy dissipation rate,ϵ, clearly show the diurnal cycles of turbulence beneath the ML in both cold tongues. Despite differences in surface forcing, EUC strength and core depth DCT occurs, and is consistent in amplitude and timing, at all three sites. Time‐mean values ofϵat 30 m depth are nearly identical at all three sites. Variations of averaged values ofϵin the deep cycle layer below 30 m range to a factor of 10 between sites. A proposed scaling in depth that isolates the deep cycle layers and ofϵby the product of wind stress and current shear collapses vertical profiles at all sites to within a factor of 2.

     
    more » « less