skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Science through storytelling or storytelling about science? Identifying cognitive task demands and expert strategies in cross-curricular STEM education
While recent shifts away from sharply demarcated disciplines to cross-curricular K-12 education show great promise for enhancing students’ interest and the relevance of subject matter, there remain many challenges to implementation as envisioned, not least among them teacher education. Most current teachers are socialized into disciplinary norms and identities through their pre-service education. To advance cross-curricular teaching, then, teachers need support, including more attention to the instructional design of teacher-facing materials. Without attention to teachers as learners, teachers will continue to implement promising educational innovations only through the lens of their discipline. Using a cognitive interview methodology, we asked how teachers with professional formation in different disciplines would approach a project that purported to connect those disciplines. On the one hand, we found that lesson planning and implementation is a broadly similar task for various types of teachers. On the other hand, we also found that, for the most part, both science and journalism educators focused more heavily on the aspects of a science journalism project that fit within their own discipline. Yet all teachers we interviewed were interested in the possibilities a cross-curricular project opens, which suggests the need for further research on implementation and uptake.  more » « less
Award ID(s):
1908515
PAR ID:
10478459
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers in Education
Date Published:
Journal Name:
Frontiers in Education
Volume:
8
ISSN:
2504-284X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While national frameworks call for the integration of science, technology, engineering, mathematics, and computer science (STEM+CS) in K-12 contexts, few studies consider elementary teachers’ perceptions of implementing STEM+CS projects in science classrooms. This single case study explores elementary science teachers’ perceptions of enacting STEM+CS curricular materials. Survey and interview data were collected over the four-week project and qualitatively coded. Findings demonstrate teachers’ reported struggles to implement unfamiliar disciplines and leverage students’ prior knowledge in familiar disciplines as well as unanticipated consequences of instructional decisions based on perceived student engagement and pacing. Results underscore the value of teacher voice for curricular and professional development and highlight the need for further investigation of how teachers’ perceptions may influence enactment of STEM+CS curricular materials. 
    more » « less
  2. Wyoming recently mandated that computer science instruction be provided in K-12 schools by 2022, and there is an urgent need for designing instruction that can integrate computer science into the teaching of other subjects. This project assembles a network improvement community comprised of partners from the University of Wyoming, community colleges, Wyoming school districts, the Wyoming Library System, the Wyoming Department of Education, and local software development firms. The community meets once monthly over the duration of the project to collaborate stakeholder agendas for meeting the project goals. The community enlists K-8 teachers from across the state to experience professional development and collaborate on integrating computer science into their instruction of STEM and social science topics. The project is producing units for teachers, who are implementing these units with support from master teachers and educational scholars. The community serves as a forum for teachers to debrief and learn from each other about ways to improve their instruction and design of the curricular units. Libraries in the state system act as partners for dissemination to rural areas of the innovative instructional approaches. WySLICE prepares 150 K-8 teachers and state librarians from all disciplines to integrate computer science into their teaching. The project is reaching almost half of all K-8 students in Wyoming. The research questions address how teachers use modeling practices as supports for student understanding of algorithms and coding in a variety of ways. The curricula involve cybersecurity as well as other topics relevant to measurement in mathematics and social studies topics that involve social concerns like voting. Data sources include teacher lesson plans and recordings of their instructional implementation, scoring of each of these according to a rubric, meeting notes of monthly meetings, and results from pre-post student assessments. The evaluation focuses on the meeting of project goals and the quality of the management of the network improvement community. This project is jointly funded by CS for All and the Established Program to Stimulate Competitive Research (EPSCoR). This work is supported by the National Science Foundation under DRL Grant #1923542 "CS For All:RPP - Booting Up Computer Science in Wyoming." 
    more » « less
  3. null (Ed.)
    This study investigates how teachers verbally support students to engage in integrated engineering, science, and computer science activities across the implementation of an engineering project. This is important as recent research has focused on understanding how precollege students’ engagement in engineering practices is supported by teachers (Watkins et al., 2018) and the benefits of integrating engineering in precollege classes, including improved achievement in science, ability to engage in science and engineering practices inherent to engineering (i.e., engineering design), and increased awareness of engineering (National Academy of Engineering and the National Research Council; Katehi et al., 2009). Further, there is a national emphasis on integrating engineering, science, and computer science practices and concepts in science classrooms (NGSS Lead States, 2013). Yet little research has considered how teachers implement these disciplines together within one classroom, particularly elementary teachers who often have little prior experience in teaching engineering and may need support to integrate engineering design into elementary science classroom settings. In particular, this study explores how elementary teachers verbally support science and computer science concepts and practices to be implicitly and explicitly integrated into an engineering project by implementing support intended by curricular materials and/or adding their own verbal support. Implicit use of integration included students engaging in integrated practices without support to know that they were doing so; explicit use of integration included teachers providing support for students to know how and why they were integrating disciplines. Our research questions include: (1) To what extent did teachers provide implicit and explicit verbal support of integration in implementation versus how it was intended in curricular materials? (2) Does this look different between two differently-tracked class sections? Participants include two fifth-grade teachers who co-led two fifth-grade classes through a four-week engineering project. The project focused on redesigning school surfaces to mitigate water runoff. Teachers integrated disciplines by supporting students to create computational models of underlying scientific concepts to develop engineering solutions. One class had a larger proportion of students who were tracked into accelerated mathematics; the other class had a larger proportion of students with individualized educational plans (IEPs). Transcripts of whole class discussion were analyzed for instances that addressed the integration of disciplines or supported students to engage in integrated activities. Results show that all instances of integration were implicit for the class with students in advanced mathematics while most were explicit for the class with students with IEPs. Additionally, support was mainly added by the teachers rather than suggested by curricular materials. Most commonly, teachers added integration between computer science and engineering. Implications of this study are an important consideration for the support that teachers need to engage in the important, but challenging, work of integrating science and computer science practices through engineering lessons within elementary science classrooms. Particularly, we consider how to assist teachers with their verbal supports of integrated curricula through engineering lessons in elementary classrooms. This study then has the potential to significantly impact the state of knowledge in interdisciplinary learning through engineering for elementary students. 
    more » « less
  4. We describe a professional development model that supports teachers to integrate computational thinking (CT) and computer science principles into middle school science and STEM classes. The model includes the collaborative design (co-design) (Voogt et al., 2015) of storylines or curricular units aligned with the Next Generation Science Standards (NGSS Lead States, 2013) that utilize programmable sensors such as those contained on the micro:bit. Teachers spend several workshops co-designing CT-integrated storylines and preparing to implement them with their own students. As part of this process, teachers develop or modify curricular materials to ensure a focus on coherent, student driven instruction through the investigation of scientific phenomena that are relevant to the students and utilize sensor technology. Teachers implement the storylines and meet to collaboratively reflect on their instructional practices as well as their students’ learning. Throughout this cyclical, multi-year process, teachers develop expertise in CT-integrated science instruction as they plan for and use instructional practices that align with three dimension science teaching and foreground computational thinking. Throughout the professional learning process, teachers alternate between wearing their “student hats” and their “teacher hats”, in order to maintain both a student and teacher perspective as they co-design and reflect on their implementation of CT-integrated units. This paper illustrates two teachers’ experiences of the professional development process over a two-year period, including their learning, planning, implementation, and reflection on two co-designed units. 
    more » « less
  5. In the face of the rising prevalence of artificial intelligence (AI) in daily life, there is a need to integrate lessons on AI literacy into K12 settings to equitably engage young adolescents in critical and ethical thinking about AI technologies. This exploratory study reports findings from a teacher professional development project designed to advance teacher AI literacy in preparation for teaching an AI curriculum in their inclusive middle school classrooms. Analysis compares the learning experiences of 30 participating teachers (including Computer Science, Science, Math, English, and Social Studies teachers). Results suggest Science teachers’ understanding of AI concepts, particularly logic structures, is on average higher than their non-Science teacher counterparts. Teacher interviews reveal several thematic differences in Science teachers’ learning from the AI PD as compared to their counterparts, namely learning from reflective discourse with diverse groups. Findings offer insights on the depth and quality of Science teacher AI literacy after participating in an AI teacher PD, with implications for future research in the integration of AI education into Science teachers’ inclusive K12 classrooms. 
    more » « less