skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Allelopathy‐selected microbiomes mitigate chemical inhibition of plant performance
Allelopathy is a common and important stressor that shapes plant communities and can alter soil microbiomes, yet little is known about the direct effects of allelochemical addition on bacterial and fungal communities or the potential for allelochemical-selected microbiomes to mediate plant performance responses, especially in habitats naturally structured by allelopathy. Here, we present the first community-wide investigation of microbial mediation of allelochemical effects on plant performance by testing how allelopathy affects soil microbiome structure and how these microbial changes impact germination and productivity across 13 plant species. The soil microbiome exhibited significant changes to ‘core’ bacterial and fungal taxa, bacterial composition, abundance of functionally important bacterial and fungal taxa, and predicted bacterial functional genes after the addition of the dominant allelochemical native to this habitat. Furthermore, plant performance was mediated by the allelochemical-selected microbiome, with allelopathic inhibition of plant productivity moderately mitigated by the microbiome. Through our findings, we present a potential framework to understand the strength of plant–microbial interactions in the presence of environmental stressors, in which frequency of the ecological stress may be a key predictor of microbiome-mediation strength.  more » « less
Award ID(s):
1922521
PAR ID:
10478629
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
New Phytologist
Date Published:
Journal Name:
New Phytologist
Volume:
240
Issue:
5
ISSN:
0028-646X
Page Range / eLocation ID:
2007 to 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Root and soil microbial communities constitute the below-ground plant microbiome, are drivers of nutrient cycling, and affect plant productivity. However, our understanding of their spatiotemporal patterns is confounded by exogenous factors that covary spatially, such as changes in host plant species, climate, and edaphic factors. These spatiotemporal patterns likely differ across microbiome domains (bacteria and fungi) and niches (root vs. soil). Results To capture spatial patterns at a regional scale, we sampled the below-ground microbiome of switchgrass monocultures of five sites spanning > 3 degrees of latitude within the Great Lakes region. To capture temporal patterns, we sampled the below-ground microbiome across the growing season within a single site. We compared the strength of spatiotemporal factors to nitrogen addition determining the major drivers in our perennial cropping system. All microbial communities were most strongly structured by sampling site, though collection date also had strong effects; in contrast, nitrogen addition had little to no effect on communities. Though all microbial communities were found to have significant spatiotemporal patterns, sampling site and collection date better explained bacterial than fungal community structure, which appeared more defined by stochastic processes. Root communities, especially bacterial, were more temporally structured than soil communities which were more spatially structured, both across and within sampling sites. Finally, we characterized a core set of taxa in the switchgrass microbiome that persists across space and time. These core taxa represented < 6% of total species richness but > 27% of relative abundance, with potential nitrogen fixing bacteria and fungal mutualists dominating the root community and saprotrophs dominating the soil community. Conclusions Our results highlight the dynamic variability of plant microbiome composition and assembly across space and time, even within a single variety of a plant species. Root and soil fungal community compositions appeared spatiotemporally paired, while root and soil bacterial communities showed a temporal lag in compositional similarity suggesting active recruitment of soil bacteria into the root niche throughout the growing season. A better understanding of the drivers of these differential responses to space and time may improve our ability to predict microbial community structure and function under novel conditions. 
    more » « less
  2. null (Ed.)
    Microbial communities help plants access nutrients and tolerate stress. Some microbiomes are specific to plant genotypes and, therefore, may contribute to intraspecific differences in plant growth and be a promising target for plant breeding. Switchgrass (Panicum virgatum) is a potential bioenergy crop with broad variation in yields and environmental responses; recent studies suggest that associations with distinct microbiomes may contribute to variation in cultivar yields. We used a common garden experiment to investigate variation in 12 mature switchgrass cultivar soil microbiomes and, furthermore, to examine how root traits and soil conditions influence microbiome structure. We found that average root diameter varied up to 33% among cultivars and that the cultivars also associated with distinct soil microbiomes. Cultivar had a larger effect on the soil bacterial than fungal community but both were strongly influenced by soil properties. Root traits had a weaker effect on microbiome structure but root length contributed to variation in the fungal community. Unlike the soil communities, the root bacterial communities did not group by cultivar, based on a subset of samples. Microbial biomass carbon and nitrogen and the abundance of several dominant bacterial phyla varied between ecotypes but overall the differences in soil microbiomes were greater among cultivars than between ecotypes. Our findings show that there is not one soil microbiome that applies to all switchgrass cultivars, or even to each ecotype. These subtle but significant differences in root traits, microbial biomass, and the abundance of certain soil bacteria could explain differences in cultivar yields and environmental responses. 
    more » « less
  3. Microbial communities are known as the primary decomposers of all the carbon accumulated in the soil. However, how important soil structure and its conventional or organic management, moisture content, and how different plant species impact this process are less understood. To answer these questions, we generated a soil microcosm with decomposing corn and soy leaves, as well as soil adjacent to the leaves, and compared it to control samples. We then used high-throughput amplicon sequencing of the ITS and 16S rDNA regions to characterize these microbiomes. Leaf microbiomes were the least diverse and the most even in terms of OTU richness and abundance compared to near soil and far soil, especially in their bacterial component. Microbial composition was significantly and primarily affected by niche (leaves vs. soil) but also by soil management type and plant species in the fungal microbiome, while moisture content and pore sizes were more important drivers for the bacterial communities. The pore size effect was significantly dependent on moisture content, but only in the organic management type. Overall, our results refine our understanding of the decomposition of carbon residues in the soil and the factors that influence it, which are key for environmental sustainability and for evaluating changes in ecosystem functions. 
    more » « less
  4. Abstract As ecosystems face unprecedented change and habitat loss, pursuing comprehensive and resilient habitat restoration will be integral to protecting and maintaining natural areas and the services they provide. Microbiomes offer an important avenue for improving restoration efforts as they are integral to ecosystem health and functioning. Despite microbiomes' importance, unresolved knowledge gaps hinder their inclusion in restoration efforts. Here, we address two critical gaps in understanding microbial roles in restoration—fungal microbiomes' importance in “reconstructive” restoration efforts and how management and restoration decisions interactively impact fungal communities and their cascading effects on trees. We combined field surveys, microbiome sequencing, and greenhouse experiments to determine how reconstructing an iconic landscape feature—tree islands—in the highly imperiled Everglades impacts fungal microbiomes and fungal effects on native tree species compared with their natural counterparts under different proposed hydrological management regimes. Constructed islands used in this research were built from peat soil and limestone collected from deep sloughs and levees nearby the restoration sites in 2003, providing 18 years for microbiome assembly on constructed islands. We found that while fungal microbiomes from natural and constructed tree islands exhibited similar diversity and richness, they differed significantly in community composition. These compositional differences arose mainly from changes to which fungal taxa were present on the islands rather than changes in relative abundances. Surprisingly, ~50% of fungal hub taxa (putative keystone fungi) from natural islands were missing on constructed islands, suggesting that differences in community composition of constructed island could be important for microbiome stability and function. The differences in fungal composition between natural and constructed islands had important consequences for tree growth. Specifically, these compositional differences interacted with hydrological regime (treatments simulating management strategies) to affect woody growth across the four tree species in our experiment. Taken together, our results demonstrate that reconstructing a landscape feature without consideration of microbiomes can result in diverging fungal communities that are likely to interact with management decisions leading to meaningful consequences for foundational primary producers. Our results recommend cooperation between restoration practitioners and ecologists to evaluate opportunities for active management and restoration of microbiomes during future reconstructive restoration. 
    more » « less
  5. Abstract Research suggests that microbiomes play a major role in structuring plant communities and influencing ecosystem processes, however, the relative roles and strength of change of microbial components have not been identified. We measured the response of fungal, arbuscular mycorrhizal fungal (AMF), bacteria, and oomycete composition 4 months after planting of field plots that varied in plant composition and diversity. Plots were planted using 18 prairie plant species from three plant families (Poaceae, Fabaceae, and Asteraceae) in monoculture, 2, 3, or 6 species richness mixtures and either species within multiple families or one family. Soil cores were collected and homogenized per plot and DNA were extracted from soil and roots of each plot. We found that all microbial groups responded to the planting design, indicating rapid microbiome response to plant composition. Fungal pathogen communities were strongly affected by plant diversity. We identified OTUs from genera of putatively pathogenic fungi that increased with plant family, indicating likely pathogen specificity. Bacteria were strongly differentiated by plant family in roots but not soil. Fungal pathogen diversity increased with planted species richness, while oomycete diversity, as well as bacterial diversity in roots, decreased. AMF differentiation in roots was detected with individual plant species, but not plant family or richness. Fungal saprotroph composition differentiated between plant family composition in plots, providing evidence for decomposer home-field advantage. The observed patterns are consistent with rapid microbiome differentiation with plant composition, which could generate rapid feedbacks on plant growth in the field, thereby potentially influencing plant community structure, and influence ecosystem processes. These findings highlight the importance of native microbial inoculation in restoration. 
    more » « less