skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Female reproduction and viral infection in a long‐lived mammal
Abstract For energetically limited organisms, life‐history theory predicts trade‐offs between reproductive effort and somatic maintenance. This is especially true of female mammals, for whom reproduction presents multifarious energetic and physiological demands.Here, we examine longitudinal changes in the gut virome (viral community) with respect to reproductive status in wild mature female chimpanzeesPan troglodytes schweinfurthiifrom two communities, Kanyawara and Ngogo, in Kibale National Park, Uganda.We used metagenomic methods to characterize viromes of individual chimpanzees while they were cycling, pregnant and lactating.Females from Kanyawara, whose territory abuts the park's boundary, had higher viral richness and loads (relative quantity of viral sequences) than females from Ngogo, whose territory is more energetically rich and located farther from large human settlements. Viral richness (total number of distinct viruses per sample) was higher when females were lactating than when cycling or pregnant. In pregnant females, viral richness increased with estimated day of gestation. Richness did not vary with age, in contrast to prior research showing increased viral abundance in older males from these same communities.Our results provide evidence of short‐term physiological trade‐offs between reproduction and infection, which are often hypothesized to constrain health in long‐lived species.  more » « less
Award ID(s):
1926737
PAR ID:
10478770
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
British Ecological Society
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
91
Issue:
10
ISSN:
0021-8790
Page Range / eLocation ID:
1999 to 2009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pollen protein content has been demonstrated to be an essential nutritional component for bees and thus important in mediating plant–pollinator interactions. However, little is known on the drivers and consequences of among‐species variation in pollen protein content and how this can impact male and female reproductive success across plant species. Among‐species variation in resources allocated to pollen nutrition could further be constrained by life‐history strategies (e.g. survival‐reproduction trade‐offs) or evolutionary history.Here, we surveyed pollen protein content for 29 species within a diverse co‐flowering community and evaluated the effect of pollen protein on male and female reproductive success. We also tested the role of life history (annuals vs. perennials) and phylogeny in mediating differences in resource allocation to pollen nutrition.We found that pollen protein content influences components of male (bee visitor abundance and pollen dispersal) but not female (conspecific pollen deposition and pollen tube growth) reproductive success, suggesting this trait affects plants only via male function. This sex‐specific effect further suggests the potential for sexual conflicts driven by differential investment on this trait. We found no phylogenetic signal on pollen protein content. However, pollen protein content was higher in annual compared to perennial species suggesting survival versus reproduction trade‐offs also contribute to variation in pollen protein at the community level.Our study underscores the importance of understanding the ecological and evolutionary drivers of pollen protein content across plant species. Our results further suggest the existence of sexual conflicts and ecological trade‐offs mediated by differential investment in pollen nutritional quality, with important implications for community assembly and the structure of plant–pollinator interactions. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  2. Synopsis Reproduction and self-maintenance are energetically costly activities involved in classic life history trade-offs. However, few studies have measured the responses of wild organisms to simultaneous changes in reproductive and self-maintenance costs, which may have interactive effects. In free-living female Barn Swallows (Hirundo rustica), we simultaneously manipulated reproductive costs (by adding or removing two nestlings) and self-maintenance costs (by attaching a ∼1 g weight in the form of a GPS tag to half of our study birds) and measured mass, immune status, blood glucose, feather growth, and reproductive output (likelihood of a second clutch, number of eggs, and time between clutches). GPS tags allowed us to analyze how movement range size affected response to brood size manipulation. Tagging altered females’ immune function as evidenced by an elevated heterophil to lymphocyte (H:L) ratio, but all females were equally likely to lay more eggs. There was no evidence of interactive effects of the tagging and brood size treatment. Range size was highly variable, and birds with large ranges grew feathers more slowly, but analyzing the effect of brood size manipulation while accounting for variation in range size did not result in any physiological response. Our results support the theoretical prediction that short-lived vertebrates do face a trade-off between reproduction and self-maintenance and, when faced with increased costs, tend to preserve investment in reproduction at the expense of parental condition. This experiment also helps us to understand how movement patterns may be relevant to life history trade-offs in wild birds. 
    more » « less
  3. null (Ed.)
    Synopsis One of the key foci of ecoimmunology is understanding the physiological interactions between reproduction and immune defense. To assess an immune challenge, investigators typically measure an immune response at a predetermined time point that was selected to represent a peak response. These time points often are based on the immunological responses of nonreproductive males. Problematically, these peaks have been applied to studies quantifying immune responses of females during reproduction, despite the fact that nonreproductive males and reproductive females display fundamentally different patterns of energy expenditure. Previous work within pharmacological research has reported that the response to the commonly-used antigen keyhole limpet hemocyanin (KLH) varies among individuals and between females and males. In this heuristic analysis, we characterize antibody responses to KLH in females with varying reproductive demands (nonreproductive, lactating, concurrently lactating, and pregnant). Serum was taken from one animal per day per group and assessed for general and specific Immunoglobulins (Igs) G and M. We then used regression analysis to characterize the antibody response curves across groups. Our results demonstrate that the antibody response curve is asynchronous among females with varying maternal demands and temporally differs from the anticipated peak responses reflected in standardized protocols. These findings highlight the importance of multiple sampling points across treatment groups for a more integrative assessment of how reproductive demand alters antibody responses in females beyond a single measurement. 
    more » « less
  4. Abstract Seasonal changes in reproduction have been described for many taxa. As reproductive seasons progress, females often shift from greater energetic investment in many small offspring towards investing less total energy into fewer, better provisioned (i.e. larger) offspring. The underlying causes of this pattern have not been assessed in many systems.Two primary hypotheses have been proposed to explain these patterns. The first is an adaptive hypothesis from life‐history theory: early offspring have a survival advantage over those produced later. Accordingly, selection favours females that invest in offspring quantity early in the season and offspring quality later. The second hypothesis suggests these patterns are not intrinsic but result from passive responses to seasonal changes in the environment experienced by reproducing females (i.e. maternal environment).To disentangle the causes underlying this pattern, which has been reported in brown anole lizards (Anolis sagrei), we performed complementary field and laboratory studies. The laboratory study carefully controlled maternal environments and quantified reproductive patterns throughout the reproductive season for each female. The field study measured similar metrics from free ranging lizards across an entire reproductive season.In the laboratory, females increased relative effort per offspring as the reproductive season progressed; smaller eggs were laid earlier, larger eggs were laid later. Moreover, we observed significant among‐individual variation in seasonal changes in reproduction, which is necessary for traits to evolve via natural selection. Because these patterns consistently emerge under controlled laboratory conditions, they likely represent an intrinsic and potentially adaptive adjustment of reproductive effort as predicted by life‐history theory.The field study revealed similar trends, further suggesting that intrinsic patterns observed in the laboratory are strong enough to persist despite the environmental variability that characterizes natural habitats. The observed patterns are indicative of an adaptive seasonal shift in parental investment in response to a deteriorating offspring environment: allocating greater resources to late‐produced offspring likely enhances maternal fitness. 
    more » « less
  5. Synopsis In temperate environments, most species of insects enter an arrested state of development, known as diapause, that enables them to survive the adverse environmental conditions associated with winter. Although diapause is restricted to a single life stage within species of insects, there are examples of insects that overwinter in the egg, larval, pupal, and adult stages. Here we offer a targeted, non-systematic literature review examining how overwintering impacts subsequent reproduction in female insects. Several factors, including the lifestage at which insects overwinter, the type of energy investment strategy females use for breeding, elements of the winter environment, and contributions from male insects can influence trade-offs that female insects face between overwintering survival and post-diapause reproduction. Additionally, climate change and elements of the urban environment, including light pollution and higher temperatures in cities, can exacerbate or ameliorate trade-offs faced by reproducing female insects. Better understanding the trade-offs between overwintering survival and reproduction in insects not only enhances our understanding of the underlying physiological mechanisms and ecological processes governing diapause and reproduction, but also provides opportunities to better manage insect pests and/or support beneficial insects. 
    more » « less