The continued development of BaTiO3-based multilayer ceramic capacitors has contributed to further miniaturization by reducing the thickness of each dielectric layer for different voltage range components. MLCC designs that achieve higher volumetric capacitive efficiency must be balanced with stable properties over long operational times at higher fields and temperatures, raising concerns about their reliability. To improve the reliability and slow transient mechanisms of oxygen vacancy electromigration that drive the degradation of insulation resistance of MLCCs, we need to develop new models and improved metrologies to enhance the performance of MLCCs. This paper demonstrates how electrical characterization techniques, such as thermally stimulated depolarization current and highly accelerated life test, can be used to better understand MLCCs' degradation and assess their reliability. Also, the limitations of existing lifetime prediction models and their shortcomings of using mean time to failure in predicting the lifetime of MLCCs are discussed along with future perspectives on evaluating the reliability of MLCCs.
more » « less- PAR ID:
- 10478824
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 122
- Issue:
- 11
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The analysis of multiple dependent degradation processes is a challenging research work in the reliability field, especially for complex degradation with random jumps. To integrally handle the jump uncertainties in degradation and the dependence among degradation processes, we construct multi-dimensional Lévy processes to describe multiple dependent degradation processes in engineering systems. The evolution of each degradation process can be modeled by a one-dimensional Lévy subordinator with a marginal Lévy measure, and the dependence among all dimensions can be described by Lévy copulas and the associated multiple-dimensional Lévy measure. This Lévy measure is obtained from all its one-dimensional marginal Lévy measures and the Lévy copula. We develop the Fokker-Planck equations to describe the probability density in stochastic systems. The Laplace transforms of both reliability function and lifetime moments are derived. Numerical examples are used to demonstrate our models in lifetime analysis.more » « less
-
Abstract Many engineering systems experience complex degradation processes along with random shocks that often pose a risk to the safe and reliable operations of the system. The analysis of dependence among multiple degradation processes has been a challenging task in the field of reliability engineering. To study dependence behaviors and jump uncertainties among degradation processes, one of the effective approaches is to model these degradation processes using multidimensional Lévy subordinators. However, a critical obstacle arises in determining the convergent mathematical form of the reliability function under Lévy measures and distributions. To obtain a closed form of reliability function, this study investigates the Lévy measure and the characteristic function of multiple dependent degradation processes. Each degradation process is modeled by a one‐dimensional Lévy subordinator utilizing the marginal Lévy measure and characteristic function. The dependence among all dimensions is described by the Lévy copula and the associated multidimensional Lévy measure. For a two‐dimensional case, we derive the reliability function and probability density function (PDF) from the characteristic function and the inverse Fourier transform. Numerical examples are provided to demonstrate the proposed models for reliability and lifetime analysis of multidimensional degradation processes in engineering systems.
-
Base metal electrode (BME) multilayer ceramic capacitors (MLCCs) are widely used in aerospace, medical, military, and communication applications, emphasizing the need for high reliability. The ongoing advancements in BaTiO3-based MLCC technology have facilitated further miniaturization and improved capacitive volumetric density for both low and high voltage devices. However, concerns persist regarding infant mortality failures and long-term reliability under higher fields and temperatures. To address these concerns, a comprehensive understanding of the mechanisms underlying insulation resistance degradation is crucial. Furthermore, there is a need to develop effective screening procedures during MLCC production and improve the accuracy of mean time to failure (MTTF) predictions. This article reviews our findings on the effect of the burn-in test, a common quality control process, on the dynamics of oxygen vacancies within BME MLCCs. These findings reveal the burn-in test has a negative impact on the lifetime and reliability of BME MLCCS. Moreover, the limitations of existing lifetime prediction models for BME MLCCs are discussed, emphasizing the need for improved MTTF predictions by employing a physics-based machine learning model to overcome the existing models’ limitations. The article also discusses the new physical-based machine learning model that has been developed. While data limitations remain a challenge, the physics-based machine learning approach offers promising results for MTTF prediction in MLCCs, contributing to improved lifetime predictions. Furthermore, the article acknowledges the limitations of relying solely on MTTF to predict MLCCs’ lifetime and emphasizes the importance of developing comprehensive prediction models that predict the entire distribution of failures.more » « less
-
null (Ed.)
Abstract Average lifetime, or mean time to failure (MTTF), of a product is an important metric to measure the product reliability. Current methods of evaluating MTTF are mainly statistics or data based. They need lifetime testing on a number of products to get the lifetime samples, which are then used to estimate MTTF. The lifetime testing, however, is expensive in terms of both time and cost. The efficiency is also low because it cannot be effectively incorporated in the early design stage where many physics-based models are available. We propose to predict MTTF in the design stage by means of physics-based models. The advantage is that the design can be continually improved by changing design variables until reliability measures, including MTTF, are satisfied. Since the physics-based models are usually computationally demanding, we face a problem with both big data (on the model input side) and small data (on the model output side). We develop an adaptive supervised training method based on Gaussian process regression, and the method can then quickly predict MTTF with minimized number of calling the physics-based models. The effectiveness of the method is demonstrated by two examples.
-
Abstract The accelerated degradation test (ADT) is an efficient tool for assessing the lifetime information of highly reliable products. However, conducting an ADT is very expensive. Therefore, how to conduct a cost‐constrained ADT plan is a great challenging issue for reliability analysts. By taking the experimental cost into consideration, this paper proposes a semi‐analytical procedure to determine the total sample size, testing stress levels, the measurement frequencies, and the number of measurements (within a degradation path) globally under a class of exponential dispersion degradation models. The proposed method is also extended to determine the global planning of a three‐level compromise plan. The advantage of the proposed method not only provides better design insights for conducting an ADT plan, but also provides an efficient algorithm to obtain a cost‐constrained ADT plan, compared with conventional optimal plans by grid search algorithms.