skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plant size, latitude, and phylogeny explain within-population variability in herbivory
Interactions between plants and herbivores are central in most ecosystems, but their strength is highly variable. The amount of variability within a system is thought to influence most aspects of plant-herbivore biology, from ecological stability to plant defense evolution. Our understanding of what influences variability, however, is limited by sparse data. We collected standardized surveys of herbivory for 503 plant species at 790 sites across 116° of latitude. With these data, we show that within-population variability in herbivory increases with latitude, decreases with plant size, and is phylogenetically structured. Differences in the magnitude of variability are thus central to how plant-herbivore biology varies across macroscale gradients. We argue that increased focus on interaction variability will advance understanding of patterns of life on Earth.  more » « less
Award ID(s):
1935498 2022036 2409605 2203582 1953888
PAR ID:
10478882
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Publisher / Repository:
AAAS
Date Published:
Journal Name:
Science
Volume:
382
Issue:
6671
ISSN:
0036-8075
Page Range / eLocation ID:
679 to 683
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the distribution of herbivore damage among leaves and individual plants is a central goal of plant–herbivore biology. Commonly observed unequal patterns of herbivore damage have conventionally been attributed to the heterogeneity in plant quality or herbivore behaviour or distribution. Meanwhile, the potential role of stochastic processes in structuring plant–herbivore interactions has been overlooked. Here, we show that based on simple first principle expectations from metabolic theory, random sampling of different sizes of herbivores from a regional pool is sufficient to explain patterns of variation in herbivore damage. This is despite making the neutral assumption that herbivory is caused by randomly feeding herbivores on identical and passive plants. We then compared its predictions against 765 datasets of herbivory on 496 species across 116° of latitude from the Herbivory Variability Network. Using only one free parameter, the estimated attack rate, our neutral model approximates the observed frequency distribution of herbivore damage among plants and especially among leaves very well. Our results suggest that neutral stochastic processes play a large and underappreciated role in natural variation in herbivory and may explain the low predictability of herbivory patterns. We argue that such prominence warrants its consideration as a powerful force in plant–herbivore interactions. 
    more » « less
  2. ABSTRACT A core hypothesis in invasion and community ecology is that species interaction patterns should differ between native and non‐native species due to non‐native species lacking a long evolutionary history in their resident communities. Numerous studies testing this hypothesis yield conflicting results, often focusing on mean interaction rates and overlooking the substantial within‐population variability in species interactions. We explored plant‐herbivore interactions in populations of native and established non‐native plant species by quantifying differences in mean herbivory and added a novel approach by comparing within‐population variability in herbivory. We include as covariates latitude, plant richness, plant growth form and cover. Using leaf herbivory data from the Herbivory Variability Network for 788 plant populations spanning 504 species globally distributed, we found no overall differences in mean herbivory or variability between native and non‐native plants. These results suggest native and established non‐native plants interact similarly with herbivores, indicating non‐native status is not a strong predictor of ecological roles. 
    more » « less
  3. The Enemy Release Hypothesis (ERH) proposes that non-native plants escape their co-evolved herbivores and benefit from reduced herbivory in their introduced ranges. Numerous studies have tested this hypothesis, with conflicting results, but previous studies focus on average levels of herbivory and overlook the substantial within-population variability in herbivory, which may provide unique insights into the ERH. We tested differences in mean herbivory and added a novel approach to the ERH by comparing within-population variability in herbivory between native and non-native plant populations. We include several covariates that might mask an effect of enemy release, including latitude, regional plant richness, plant growth form and plant cover. We use leaf herbivory data collected by the Herbivory Variability Network for 788 plant populations (616 native range populations and 172 introduced range populations) of 503 different native and non-native species distributed worldwide. We found no overall differences in mean herbivory or herbivory variability between native and non-native plant populations. Taken together, our results indicate no evidence of enemy release for non-native plants, suggesting that enemy release is not a generalized mechanism favoring the success of non-native species. 
    more » « less
  4. Ecological stability in plant communities is shaped by bottom-up processes like environmental resource fluctuations and top-down controls such as herbivory, each of which have demonstrated direct effects but may also act indirectly by altering plant community dynamics. These indirect effects, called biotic stability mechanisms, have been studied across environmental gradients, but few studies have assessed the importance of top-down controls on biotic stability mechanisms in conjunction with bottom-up processes. Here we use a long-term herbivore exclusion experiment in central Kenya to explore the joint effects of drought and herbivory (bottom-up and top-down limitation, respectively) on three biotic stability mechanisms: (1) species asynchrony, in which a decline in one species is compensated for by a rise in another, (2) stable dominant species driving overall stability, and (3) the portfolio effect, in which a community property is distributed among multiple species. We calculated the temporal stability of herbaceous cover and biotic stability mechanisms over a 22-year time series and with a moving window to examine changes through time. Both drought and herbivory additively reduced asynchronous dynamics, leading to lower stability during droughts and under high herbivore pressure. This effect is likely attributed to a reduction in palatable dominant species under higher herbivory, which creates space for subordinate species to fluctuate synchronously in response to rainfall variability. Dominant species population stability promoted community stability, an effect that did not vary with precipitation but depended on herbivory. The portfolio effect was not important for stability in this system. Our results demonstrate that this system is naturally dynamic, and a future of increasing drought may reduce its stability. However, these effects will in turn be amplified or buffered depending on changes in herbivore communities and their direct and indirect impacts on plant community dynamics. 
    more » « less
  5. Abstract Herbivory is a key process structuring vegetation in savannas, especially in Africa where large mammal herbivore communities remain intact. Exclusion experiments consistently show that herbivores impact savanna vegetation, but effect size variation has resisted explanation, limiting our understanding of the past, present and future roles of herbivory in savanna ecosystems.Synthesis of vegetation responses to herbivore exclusion shows that herbivory decreased grass abundance by 57.0% and tree abundance by 30.6% across African savannas.The magnitude of herbivore exclusion effects scaled with herbivore abundance: more grazing herbivores resulted in larger grass responses and more browsing herbivores in larger tree responses. However, existing experiments are concentrated in semi‐arid savannas (400–800‐mm rainfall) and soils data are mostly lacking, which makes disentangling environmental constraints a challenge and priority for future research.Observed herbivore impacts were ~2.1× larger than existing estimates modelled based on consumption. Wildlife metabolic rates may be higher than are usually used for estimating consumption, which offers one clear avenue for reconciling estimated herbivore consumption with observed herbivore impacts. Plant‐soil feedbacks, plant community composition, and the phenological or demographic timing of herbivory may also influence vegetation productivity, thereby magnifying herbivore impacts.Because herbivore abundance so closely predicts vegetation impact, changes in herbivore abundance through time are likely predictive of the past and future of their impacts. Grazer diversity in Africa has declined from its peak 1 million years ago and wild grazer abundance has declined historically, suggesting that grazing likely had larger impacts in the past than it does today.Current wildlife impacts are dominated by small‐bodied mixed feeders, which will likely continue into the future, but the magnitude of top‐down control may also depend on changing climate, fire and atmospheric CO2.Synthesis. Herbivore biomass determines the magnitude of their impacts on savanna vegetation, with effect sizes based on direct observation that outstrip existing modelled estimates across African savannas. Findings suggest substantial ecosystem impacts of herbivory and allow us to generate evidence‐based hypotheses of the past and future impacts of herbivores on savanna vegetation. 
    more » « less