skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Long-term herbivore removal experiments reveal how geese and reindeer shape vegetation and ecosystem CO2-fluxes in high-Arctic tundra
1. Given the current rates of climate change, with associated shifts in herbivore population densities, understanding the role of different herbivores in ecosystem functioning is critical for predicting ecosystem responses. Here, we examined how migratory geese and resident, non-migratory reindeer—two dominating yet functionally contrasting herbivores—control vegetation and ecosystem processes in rapidly warming Arctic tundra. 2. We collected vegetation and ecosystem carbon (C) flux data at peak plant growing season in the two longest running, fully replicated herbivore removal experiments found in high-Arctic Svalbard. Experiments had been set up independently in wet habitat utilised by barnacle geese Branta leucopsis in summer and in moist-to-dry habitat utilised by wild reindeer Rangifer tarandus platyrhynchus year-round. 3. Excluding geese induced vegetation state transitions from heavily grazed, moss-dominated (only 4 g m−2 of live above-ground vascular plant biomass) to ungrazed, graminoid-dominated (60 g m−2 after 4-year exclusion) and horsetail-dominated (150 g m−2 after 15- year exclusion) tundra. This caused large increases in vegetation C and nitrogen (N) pools, dead biomass and moss-layer depth. Alterations in plant N concentration and CN ratio suggest overall slower plant community nu- trient dynamics in the short-term (4-year) absence of geese. Long-term (15-year) goose removal quadrupled net ecosystem C sequestration (NEE) by increasing ecosystem photosynthesis more than ecosystem respiration (ER). 4. Excluding reindeer for 21 years also produced detectable increases in live aboveground vascular plant biomass (from 50 to 80 g m−2 ; without promoting vegetation state shifts), as well as in vegetation C and N pools, dead biomass, moss-layer depth and ER. Yet, reindeer removal did not alter the chemistry of plants and soil or NEE. 5. Synthesis. Although both herbivores were key drivers of ecosystem structure and function, the control exerted by geese in their main habitat (wet tundra) was much more pronounced than that exerted by reindeer in their main habitat (moist-to-dry tundra). Importantly, these herbivore effects are scale dependent, because geese are more spatially concentrated and thereby affect a smaller portion of the tundra landscape compared to reindeer. Our results highlight the substantial heterogeneity in how herbivores shape tundra vegetation and ecosystem processes, with implications for ongoing environmental change.  more » « less
Award ID(s):
2113641
PAR ID:
10479163
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
British Ecological Society
Date Published:
Journal Name:
Journal of Ecology
Volume:
111
Issue:
12
ISSN:
0022-0477
Page Range / eLocation ID:
2627 to 2642
Subject(s) / Keyword(s):
carbon (C) and nitrogen (N), ecosystem respiration (ER), gross ecosystem photosynthesis (GEP), habitats, mosses, net ecosystem exchange (NEE), plant–herbivore interactions, Svalbard
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A combination of theory and experiments predicts that increasing soil nutrients will modify herbivore and microbial impacts on ecosystem carbon cycling.However, few studies of herbivores and soil nutrients have measured both ecosystem carbon fluxes and carbon pools. Even more rare are studies manipulating microbes and nutrients that look at ecosystem carbon cycling responses.We added nutrients to a long‐term, experiment manipulating foliar fungi, soil fungi, mammalian herbivores and arthropods in a low fertility grassland. We measured gross primary production (GPP), ecosystem respiration (ER), net ecosystem exchange (NEE) and plant biomass throughout the growing season to determine how nutrients modify consumer impacts on ecosystem carbon cycling.Nutrient addition increased above‐ground biomass and GPP, but not ER, resulting in an increase in ecosystem carbon uptake rate. Reducing foliar fungi and arthropods increased plant biomass. Nutrients amplified consumer effects on plant biomass, such that arthropods and foliar fungi had a threefold larger impact on above‐ground biomass in fertilized plots.Synthesis. Our work demonstrates that throughout the growing season soil resources modify carbon uptake rates as well as animal and fungal impacts on plant biomass production. Taken together, ongoing nutrient pollution may increase ecosystem carbon uptake and drive fungi and herbivores to have larger impacts on plant biomass production. 
    more » « less
  2. Abstract Environmental changes, such as climate warming and higher herbivory pressure, are altering the carbon balance of Arctic ecosystems; yet, how these drivers modify the carbon balance among different habitats remains uncertain. This hampers our ability to predict changes in the carbon sink strength of tundra ecosystems. We investigated how spring goose grubbing and summer warming—two key environmental‐change drivers in the Arctic—alter CO2fluxes in three tundra habitats varying in soil moisture and plant‐community composition. In a full‐factorial experiment in high‐Arctic Svalbard, we simulated grubbing and warming over two years and determined summer net ecosystem exchange (NEE) alongside its components: gross ecosystem productivity (GEP) and ecosystem respiration (ER). After two years, we found net CO2uptake to be suppressed by both drivers depending on habitat. CO2uptake was reduced by warming in mesic habitats, by warming and grubbing in moist habitats, and by grubbing in wet habitats. In mesic habitats, warming stimulated ER (+75%) more than GEP (+30%), leading to a 7.5‐fold increase in their CO2source strength. In moist habitats, grubbing decreased GEP and ER by ~55%, while warming increased them by ~35%, with no changes in summer‐long NEE. Nevertheless, grubbing offset peak summer CO2uptake and warming led to a twofold increase in late summer CO2source strength. In wet habitats, grubbing reduced GEP (−40%) more than ER (−30%), weakening their CO2sink strength by 70%. One‐year CO2‐flux responses were similar to two‐year responses, and the effect of simulated grubbing was consistent with that of natural grubbing. CO2‐flux rates were positively related to aboveground net primary productivity and temperature. Net ecosystem CO2uptake started occurring above ~70% soil moisture content, primarily due to a decline in ER. Herein, we reveal that key environmental‐change drivers—goose grubbing by decreasing GEP more than ER and warming by enhancing ER more than GEP—consistently suppress net tundra CO2uptake, although their relative strength differs among habitats. By identifying how and where grubbing and higher temperatures alter CO2fluxes across the heterogeneous Arctic landscape, our results have implications for predicting the tundra carbon balance under increasing numbers of geese in a warmer Arctic. 
    more » « less
  3. Chen, Jing M (Ed.)
    The Arctic is warming faster than anywhere else on Earth, placing tundra ecosystems at the forefront of global climate change. Plant biomass is a fundamental ecosystem attribute that is sensitive to changes in climate, closely tied to ecological function, and crucial for constraining ecosystem carbon dynamics. However, the amount, functional composition, and distribution of plant biomass are only coarsely quantified across the Arctic. Therefore, we developed the first moderate resolution (30 m) maps of live aboveground plant biomass (g m− 2) and woody plant dominance (%) for the Arctic tundra biome, including the mountainous Oro Arctic. We modeled biomass for the year 2020 using a new synthesis dataset of field biomass harvest measurements, Landsat satellite seasonal synthetic composites, ancillary geospatial data, and machine learning models. Additionally, we quantified pixel-wise uncertainty in biomass predictions using Monte Carlo simulations and validated the models using a robust, spatially blocked and nested cross-validation procedure. Observed plant and woody plant biomass values ranged from 0 to ~6000 g m− 2 (mean ≈350 g m− 2), while predicted values ranged from 0 to ~4000 g m− 2 (mean ≈275 g m− 2), resulting in model validation root-mean-squared-error (RMSE) ≈400 g m− 2 and R2 ≈ 0.6. Our maps not only capture large-scale patterns of plant biomass and woody plant dominance across the Arctic that are linked to climatic variation (e.g., thawing degree days), but also illustrate how fine-scale patterns are shaped by local surface hydrology, topography, and past disturbance. By providing data on plant biomass across Arctic tundra ecosystems at the highest resolution to date, our maps can significantly advance research and inform decision-making on topics ranging from Arctic vegetation monitoring and wildlife conservation to carbon accounting and land surface modeling 
    more » « less
  4. ABSTRACT Geographic variation in ecosystem function is often attributed to differences in climate and soil properties, with biophysical constraints assumed to dictate spatial patterns in nutrient cycling, carbon storage, and plant productivity. However, biotic interactions, particularly herbivory, also vary geographically and can generate feedbacks that influence ecosystem processes. Using a replicated three‐year field experiment, we tested how population‐level functional differences in a widespread arthropod herbivore mediate geographic variation in ecosystem function. Structural equation modeling revealed that herbivores exerted strong direct effects on plant biomass, soil carbon, and nitrogen mineralization, often surpassing the influence of historical conditions and geographic variation in climate. Moreover, functionally distinct herbivore populations had divergent effects on nutrient cycling and plant diversity, demonstrating that population‐level differences introduce novel pathways of influence on ecosystem function. These findings challenge ecosystem models that prioritize abiotic constraints and highlight the need to incorporate consumer‐driven feedbacks into ecological frameworks. 
    more » « less
  5. null (Ed.)
    1. Herbivory is a key process structuring vegetation in savannas, especially in Africa where large mammal herbivore communities remain intact. Exclusion experiments consistently show that herbivores impact savanna vegetation, but effect size variation has resisted explanation, limiting our understanding of the past, present and future roles of herbivory in savanna ecosystems. 2. Synthesis of vegetation responses to herbivore exclusion shows that herbivory decreased grass abundance by 57.0% and tree abundance by 30.6% across African savannas. 3. The magnitude of herbivore exclusion effects scaled with herbivore abundance: more grazing herbivores resulted in larger grass responses and more browsing herbivores in larger tree responses. However, existing experiments are concentrated in semi-arid savannas (400–800-mm rainfall) and soils data are mostly lack- ing, which makes disentangling environmental constraints a challenge and priority for future research. 4. Observed herbivore impacts were ~2.1× larger than existing estimates modelled based on consumption. Wildlife metabolic rates may be higher than are usually used for estimating consumption, which offers one clear avenue for reconciling estimated herbivore consumption with observed herbivore impacts. Plant-soil feedbacks, plant community composition, and the phenological or demographic timing of herbivory may also influence vegetation productivity, thereby magnify- ing herbivore impacts. 5. Because herbivore abundance so closely predicts vegetation impact, changes in herbivore abundance through time are likely predictive of the past and future of their impacts. Grazer diversity in Africa has declined from its peak 1 million years ago and wild grazer abundance has declined historically, suggesting that grazing likely had larger impacts in the past than it does today. 6. Current wildlife impacts are dominated by small-bodied mixed feeders, which will likely continue into the future, but the magnitude of top-down control may also depend on changing climate, fire and atmospheric CO2. 7. Synthesis. Herbivore biomass determines the magnitude of their impacts on savanna vegetation, with effect sizes based on direct observation that outstrip existing modelled estimates across African savannas. Findings suggest substantial ecosystem impacts of herbivory and allow us to generate evidence-based hypotheses of the past and future impacts of herbivores on savanna vegetation. 
    more » « less