skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Next generation Arctic vegetation maps: Aboveground plant biomass and woody dominance mapped at 30 m resolution across the tundra biome
The Arctic is warming faster than anywhere else on Earth, placing tundra ecosystems at the forefront of global climate change. Plant biomass is a fundamental ecosystem attribute that is sensitive to changes in climate, closely tied to ecological function, and crucial for constraining ecosystem carbon dynamics. However, the amount, functional composition, and distribution of plant biomass are only coarsely quantified across the Arctic. Therefore, we developed the first moderate resolution (30 m) maps of live aboveground plant biomass (g m− 2) and woody plant dominance (%) for the Arctic tundra biome, including the mountainous Oro Arctic. We modeled biomass for the year 2020 using a new synthesis dataset of field biomass harvest measurements, Landsat satellite seasonal synthetic composites, ancillary geospatial data, and machine learning models. Additionally, we quantified pixel-wise uncertainty in biomass predictions using Monte Carlo simulations and validated the models using a robust, spatially blocked and nested cross-validation procedure. Observed plant and woody plant biomass values ranged from 0 to ~6000 g m− 2 (mean ≈350 g m− 2), while predicted values ranged from 0 to ~4000 g m− 2 (mean ≈275 g m− 2), resulting in model validation root-mean-squared-error (RMSE) ≈400 g m− 2 and R2 ≈ 0.6. Our maps not only capture large-scale patterns of plant biomass and woody plant dominance across the Arctic that are linked to climatic variation (e.g., thawing degree days), but also illustrate how fine-scale patterns are shaped by local surface hydrology, topography, and past disturbance. By providing data on plant biomass across Arctic tundra ecosystems at the highest resolution to date, our maps can significantly advance research and inform decision-making on topics ranging from Arctic vegetation monitoring and wildlife conservation to carbon accounting and land surface modeling  more » « less
Award ID(s):
1936752 2116862
PAR ID:
10614687
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Editor(s):
Chen, Jing M
Publisher / Repository:
Remote Sensing of Environment
Date Published:
Journal Name:
Remote Sensing of Environment
Volume:
323
Issue:
C
ISSN:
0034-4257
Page Range / eLocation ID:
114717
Subject(s) / Keyword(s):
Pan Arctic Plant biomass Woody plant dominance Vegetation distribution Remote sensing Climate change Landsat
Format(s):
Medium: X Size: 2.2 MB Other: pdf
Size(s):
2.2 MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Arctic vegetation communities are rapidly changing with climate warming, which impacts wildlife, carbon cycling and climate feedbacks. Accurately monitoring vegetation change is thus crucial, but scale mismatches between field and satellite-based monitoring cause challenges. Remote sensing from unmanned aerial vehicles (UAVs) has emerged as a bridge between field data and satellite-based mapping. We assess the viability of using high resolution UAV imagery and UAV-derived Structure from Motion (SfM) to predict cover, height and aboveground biomass (henceforth biomass) of Arctic plant functional types (PFTs) across a range of vegetation community types. We classified imagery by PFT, estimated cover and height, and modeled biomass from UAV-derived volume estimates. Predicted values were compared to field estimates to assess results. Cover was estimated with root-mean-square error (RMSE) 6.29-14.2% and height was estimated with RMSE 3.29-10.5 cm, depending on the PFT. Total aboveground biomass was predicted with RMSE 220.5 g m-2, and per-PFT RMSE ranged from 17.14-164.3 g m-2. Deciduous and evergreen shrub biomass was predicted most accurately, followed by lichen, graminoid, and forb biomass. Our results demonstrate the effectiveness of using UAVs to map PFT biomass, which provides a link towards improved mapping of PFTs across large areas using earth observation satellite imagery. 
    more » « less
  2. Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic Plant Aboveground Biomass Synthesis Dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass grams per meter squared (g/m^2) on 2327 sample plots in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic. 
    more » « less
  3. Abstract Given the current rates of climate change, with associated shifts in herbivore population densities, understanding the role of different herbivores in ecosystem functioning is critical for predicting ecosystem responses. Here, we examined how migratory geese and resident, non‐migratory reindeer—two dominating yet functionally contrasting herbivores—control vegetation and ecosystem processes in rapidly warming Arctic tundra.We collected vegetation and ecosystem carbon (C) flux data at peak plant growing season in the two longest running, fully replicated herbivore removal experiments found in high‐Arctic Svalbard. Experiments had been set up independently in wet habitat utilised by barnacle geeseBranta leucopsisin summer and in moist‐to‐dry habitat utilised by wild reindeerRangifer tarandus platyrhynchusyear‐round.Excluding geese induced vegetation state transitions from heavily grazed, moss‐dominated (only 4 g m−2of live above‐ground vascular plant biomass) to ungrazed, graminoid‐dominated (60 g m−2after 4‐year exclusion) and horsetail‐dominated (150 g m−2after 15‐year exclusion) tundra. This caused large increases in vegetation C and nitrogen (N) pools, dead biomass and moss‐layer depth. Alterations in plant N concentration and CN ratio suggest overall slower plant community nutrient dynamics in the short‐term (4‐year) absence of geese. Long‐term (15‐year) goose removal quadrupled net ecosystem C sequestration (NEE) by increasing ecosystem photosynthesis more than ecosystem respiration (ER).Excluding reindeer for 21 years also produced detectable increases in live above‐ground vascular plant biomass (from 50 to 80 g m−2; without promoting vegetation state shifts), as well as in vegetation C and N pools, dead biomass, moss‐layer depth and ER. Yet, reindeer removal did not alter the chemistry of plants and soil or NEE.Synthesis. Although both herbivores were key drivers of ecosystem structure and function, the control exerted by geese in their main habitat (wet tundra) was much more pronounced than that exerted by reindeer in their main habitat (moist‐to‐dry tundra). Importantly, these herbivore effects are scale dependent, because geese are more spatially concentrated and thereby affect a smaller portion of the tundra landscape compared to reindeer. Our results highlight the substantial heterogeneity in how herbivores shape tundra vegetation and ecosystem processes, with implications for ongoing environmental change. 
    more » « less
  4. Abstract Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we presentThe Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m−2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic. 
    more » « less
  5. Abstract Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades. 
    more » « less