skip to main content


Title: Tevatron: An Efficient and Flexible Toolkit for Neural Retrieval
Recent rapid advances in deep pre-trained language models and the introduction of large datasets have powered research in embedding-based neural retrieval. While many excellent research papers have emerged, most of them come with their own implementations, which are typically optimized for some particular research goals instead of efficiency or code organization. In this paper, we introduce Tevatron, a neural retrieval toolkit that is optimized for efficiency, flexibility, and code simplicity. Tevatron enables model training and evaluation for a variety of ranking components such as dense retrievers, sparse retrievers, and rerankers. It also provides a standardized pipeline that includes text processing, model training, corpus/query encoding, and search. In addition, Tevatron incorporates well-studied methods for improving retriever effectiveness such as hard negative mining and knowledge distillation. We provide an overview of Tevatron in this paper, demonstrating its effectiveness and efficiency on multiple IR and QA datasets. We highlight Tevatron’s flexible design, which enables easy generalization across datasets, model architectures, and accelerator platforms (GPUs and TPUs). Overall, we believe that Tevatron can serve as a solid software foundation for research on neural retrieval systems, including their design, modeling, and optimization.  more » « less
Award ID(s):
1815528
PAR ID:
10479203
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9781450394086
Page Range / eLocation ID:
3120 to 3124
Format(s):
Medium: X
Location:
Taipei Taiwan
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent research demonstrates the effectiveness of using fine-tuned language models (LM) for dense retrieval. However, dense retrievers are hard to train, typically requiring heavily engineered fine-tuning pipelines to realize their full potential. In this paper, we identify and address two underlying problems of dense retrievers: i) fragility to training data noise and ii) requiring large batches to robustly learn the embedding space. We use the recently proposed Condenser pre-training architecture, which learns to condense information into the dense vector through LM pre-training. On top of it, we propose coCondenser, which adds an unsupervised corpus-level contrastive loss to warm up the passage embedding space. Experiments on MS-MARCO, Natural Question, and Trivia QA datasets show that coCondenser removes the need for heavy data engineering such as augmentation, synthesis, or filtering, and the need for large batch training. It shows comparable performance to RocketQA, a state-of-the-art, heavily engineered system, using simple small batch fine-tuning. 
    more » « less
  2. Systems for knowledge-intensive tasks such as open-domain question answering (QA) usually consist of two stages: efficient retrieval of relevant documents from a large corpus and detailed reading of the selected documents. This is usually done through two separate models, a retriever that encodes the query and finds nearest neighbors, and a reader based on Transformers. These two components are usually modeled separately, which necessitates a cumbersome implementation and is awkward to optimize in an end-to-end fashion. In this paper, we revisit this design and eschew the separate architecture and training in favor of a single Transformer that performs retrieval as attention (RAA), and end-to-end training solely based on supervision from the end QA task. We demonstrate for the first time that an end-to-end trained single Transformer can achieve both competitive retrieval and QA performance on in-domain datasets, matching or even slightly outperforming state-of-the-art dense retrievers and readers. Moreover, end-to-end adaptation of our model significantly boosts its performance on out-of-domain datasets in both supervised and unsupervised settings, making our model a simple and adaptable end-to-end solution for knowledge-intensive tasks. 
    more » « less
  3. null (Ed.)
    Classical information retrieval systems such asBM25 rely on exact lexical match and carryout search efficiently with inverted list index. Recent neural IR models shifts towards soft semantic matching all query document terms,but they lose the computation efficiency of exact match systems.This paper presents COIL, a contextualized exact match retrieval architecture that brings semantic lexical matching. COIL scoring is based on overlapping query document tokens’ contextualized representations. The new architecture stores contextualized token representations in inverted lists, bringing together the efficiency of exact match and the representation power of deep language models. Our experimental results show COIL outperforms classical lexical retrievers and state-of-the-art deep LM retrievers with similar or smaller latency. 
    more » « less
  4. Deep neural networks (DNNs) demonstrates significant advantages in improving ranking performance in retrieval tasks. Driven by the recent developments in optimization and generalization of DNNs, learning a neural ranking model online from its interactions with users becomes possible. However, the required exploration for model learning has to be performed in the entire neural network parameter space, which is prohibitively expensive and limits the application of such online solutions in practice. In this work, we propose an efficient exploration strategy for online interactive neural ranker learning based on bootstrapping. Our solution is based on an ensemble of ranking models trained with perturbed user click feedback. The proposed method eliminates explicit confidence set construction and the associated computational overhead, which enables the online neural rankers training to be efficiently executed in practice with theoretical guarantees. Extensive comparisons with an array of state-of-the-art OL2R algorithms on two public learning to rank benchmark datasets demonstrate the effectiveness and computational efficiency of our proposed neural OL2R solution. 
    more » « less
  5. Chua, Tat-Seng ; Ngo, Chong-Wah ; Kumar, Ravi ; Lauw, Hady W ; Lee, Roy Ka-Wei (Ed.)
    Document retrieval has greatly benefited from the advancements of large-scale pre-trained language models (PLMs). However, their effectiveness is often limited in theme-specific applications for specialized areas or industries, due to unique terminologies, incomplete contexts of user queries, and specialized search intents. To capture the theme-specific information and improve retrieval, we propose to use a corpus topical taxonomy, which outlines the latent topic structure of the corpus while reflecting user-interested aspects. We introduce ToTER (Topical Taxonomy Enhanced Retrieval) framework, which identifies the central topics of queries and documents with the guidance of the taxonomy, and exploits their topical relatedness to supplement missing contexts. As a plug-and-play framework, ToTER can be flexibly employed to enhance various PLM-based retrievers. Through extensive quantitative, ablative, and exploratory experiments on two real-world datasets, we ascertain the benefits of using topical taxonomy for retrieval in theme-specific applications and demonstrate the effectiveness of ToTER. 
    more » « less