The automated construction of topic taxonomies can benefit numerous applications, including web search, recommendation, and knowledge discovery. One of the major advantages of automatic taxonomy construction is the ability to capture corpus-specific information and adapt to different scenarios. To better reflect the characteristics of a corpus, we take the meta-data of documents into consideration and view the corpus as a text-rich network. In this paper, we propose NetTaxo, a novel automatic topic taxonomy construction framework, which goes beyond the existing paradigm and allows text data to collaborate with network structure. Specifically, we learn term embeddings from both text and network as contexts. Network motifs are adopted to capture appropriate network contexts. We conduct an instance-level selection for motifs, which further refines term embedding according to the granularity and semantics of each taxonomy node. Clustering is then applied to obtain sub-topics under a taxonomy node. Extensive experiments on two real-world datasets demonstrate the superiority of our method over the state-of-the-art, and further verify the effectiveness and importance of instance-level motif selection. 
                        more » 
                        « less   
                    
                            
                            Improving Retrieval in Theme-specific Applications using a Corpus Topical Taxonomy
                        
                    
    
            Document retrieval has greatly benefited from the advancements of large-scale pre-trained language models (PLMs). However, their effectiveness is often limited in theme-specific applications for specialized areas or industries, due to unique terminologies, incomplete contexts of user queries, and specialized search intents. To capture the theme-specific information and improve retrieval, we propose to use a corpus topical taxonomy, which outlines the latent topic structure of the corpus while reflecting user-interested aspects. We introduce ToTER (Topical Taxonomy Enhanced Retrieval) framework, which identifies the central topics of queries and documents with the guidance of the taxonomy, and exploits their topical relatedness to supplement missing contexts. As a plug-and-play framework, ToTER can be flexibly employed to enhance various PLM-based retrievers. Through extensive quantitative, ablative, and exploratory experiments on two real-world datasets, we ascertain the benefits of using topical taxonomy for retrieval in theme-specific applications and demonstrate the effectiveness of ToTER. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10541805
- Editor(s):
- Chua, Tat-Seng; Ngo, Chong-Wah; Kumar, Ravi; Lauw, Hady W; Lee, Roy Ka-Wei
- Publisher / Repository:
- ACM
- Date Published:
- Edition / Version:
- 1
- ISBN:
- 9798400701719
- Page Range / eLocation ID:
- 1497 to 1508
- Subject(s) / Keyword(s):
- Information Retrieval Theme-specific Applications Topical Taxonomy
- Format(s):
- Medium: X
- Location:
- Singapore Singapore
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Formula retrieval systems using substructure matching are effective, but suffer from slow retrieval times caused by the complexity of structure matching. We present a specialized inverted index and rank-safe dynamic pruning algorithm for faster substructure retrieval. Formulas are indexed from their Operator Tree (OPT) representations. Our model is evaluated using the NTCIR-12 Wikipedia Formula Browsing Task and a new formula corpus produced from Math StackExchange posts. Our approach preserves the effectiveness of structure matching while allowing queries to be executed in real-time.more » « less
- 
            Retrieval-augmented generation (RAG) systems can effectively address user queries by leveraging indexed document corpora to retrieve the relevant contexts. Ranking techniques have been adopted in RAG systems to sort the retrieved contexts by their relevance to the query so that users can select the most useful contexts for their downstream tasks. While many existing ranking methods rely on the similarity between the embedding vectors of the context and query to measure relevance, it is important to note that similarity does not equate to relevance in all scenarios. Some ranking methods use large language models (LLMs) to rank the contexts by putting the query and the candidate contexts in the prompt and asking LLM about their relevance. The scalability of those methods is contingent on the number of candidate contexts and the context window of those LLMs. Also, those methods require fine-tuning the LLMs, which can be computationally expensive and require domain-related data. In this work, we propose a scalable ranking framework that does not involve LLM training. Our framework uses an off-the-shelf LLM to hypothesize the user's query based on the retrieved contexts and ranks the contexts based on the similarity between the hypothesized queries and the user query. Our framework is efficient at inference time and is compatible with many other context retrieval and ranking techniques. Experimental results show that our method improves the ranking performance of retrieval systems in multiple benchmarks.more » « less
- 
            Taxonomies are of great value to many knowledge-rich applications. As the manual taxonomy curation costs enormous human effects, automatic taxonomy construction is in great demand. However, most existing automatic taxonomy construction methods can only build hypernymy taxonomies wherein each edge is limited to expressing the “is-a” relation. Such a restriction limits their applicability to more diverse real-world tasks where the parent-child may carry different relations. In this paper, we aim to construct a task-guided taxonomy from a domain-specific corpus, and allow users to input a “seed” taxonomy, serving as the task guidance. We propose an expansion-based taxonomy construction framework, namely HiExpan, which automatically generates key term list from the corpus and iteratively grows the seed taxonomy. Specifically, HiExpan views all children under each taxonomy node forming a coherent set and builds the taxonomy by recursively expanding all these sets. Furthermore, HiExpan incorporates a weakly-supervised relation extraction module to extract the initial children of a newly expanded node and adjusts the taxonomy tree by optimizing its global structure. Our experiments on three real datasets from different domains demonstrate the effectiveness of HiExpan for building task-guided taxonomies.more » « less
- 
            Abstract—We consider the ability of CLIP features to support text-driven image retrieval. Traditional image-based queries sometimes misalign with user intentions due to their focus on irrelevant image components. To overcome this, we explore the potential of text-based image retrieval, specifically using Contrastive Language-Image Pretraining (CLIP) models. CLIP models, trained on large datasets of image-caption pairs, offer a promising approach by allowing natural language descriptions for more targeted queries. We explore the effectiveness of textdriven image retrieval based on CLIP features by evaluating the image similarity for progressively more detailed queries. We find that there is a sweet-spot of detail in the text that gives best results and find that words describing the “tone” of a scene (such as messy, dingy) are quite important in maximizing text-image similarity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    