skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning-Based Adaptive Optimal Control of Linear Time-Delay Systems: A Policy Iteration Approach
This paper studies the adaptive optimal control problem for a class of linear time-delay systems described by delay differential equations (DDEs). A crucial strategy is to take advantage of recent developments in reinforcement learning (RL) and adaptive dynamic programming (ADP) and develop novel methods to learn adaptive optimal controllers from finite samples of input and state data. In this paper, the data-driven policy iteration (PI) is proposed to solve the infinite-dimensional algebraic Riccati equation (ARE) iteratively in the absence of exact model knowledge. Interestingly, the proposed recursive PI algorithm is new in the present context of continuous-time time-delay systems, even when the model knowledge is assumed known. The efficacy of the proposed learning-based control methods is validated by means of practical applications arising from metal cutting and autonomous driving.  more » « less
Award ID(s):
1903781 2148309
PAR ID:
10479220
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Automatic Control
ISSN:
0018-9286
Page Range / eLocation ID:
1 to 8
Subject(s) / Keyword(s):
Adaptive dynamic programming, optimal control, linear time-delay systems, policy iteration
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper studies the learning-based optimal control for a class of infinite-dimensional linear time-delay systems. The aim is to fill the gap of adaptive dynamic programming (ADP) where adaptive optimal control of infinite-dimensional systems is not addressed. A key strategy is to combine the classical model-based linear quadratic (LQ) optimal control of time-delay systems with the state-of-art reinforcement learning (RL) technique. Both the model-based and data-driven policy iteration (PI) approaches are proposed to solve the corresponding algebraic Riccati equation (ARE) with guaranteed convergence. The proposed PI algorithm can be considered as a generalization of ADP to infinite-dimensional time-delay systems. The efficiency of the proposed algorithm is demonstrated by the practical application arising from autonomous driving in mixed traffic environments, where human drivers’ reaction delay is considered. 
    more » « less
  2. This paper presents a first solution to the problem of adaptive LQR for continuous-time linear periodic systems. Specifically, reinforcement learning and adaptive dynamic programming (ADP) techniques are used to develop two algorithms to obtain near-optimal controllers. Firstly, the policy iteration (PI) and value iteration (VI) methods are proposed when the model is known. Then, PI-based and VI-based off-policy ADP algorithms are derived to find near-optimal solutions directly from input/state data collected along the system trajectories, without the exact knowledge of system dynamics. The effectiveness of the derived algorithms is validated using the well-known lossy Mathieu equation. 
    more » « less
  3. This paper proposes a novel learning-based adaptive optimal controller design method for a class of continuous-time linear time-delay systems. A key strategy is to exploit the state-of-the-art reinforcement learning (RL) techniques and adaptive dynamic programming (ADP), and propose a data-driven method to learn the near-optimal controller without the precise knowledge of system dynamics. Specifically, a value iteration (VI) algorithm is proposed to solve the infinite-dimensional Riccati equation for the linear quadratic optimal control problem of time-delay systems using finite samples of input-state trajectory data. It is rigorously proved that the proposed VI algorithm converges to the near-optimal solution. Compared with the previous literature, the nice features of the proposed VI algorithm are that it is directly developed for continuous-time systems without discretization and an initial admissible controller is not required for implementing the algorithm. The efficacy of the proposed methodology is demonstrated by two practical examples of metal cutting and autonomous driving. 
    more » « less
  4. This paper presents a novel learning-based adaptive optimal controller design for linear time-delay systems described by delay differential equations (DDEs). A key strategy is to exploit the value iteration (VI) approach to solve the linear quadratic optimal control problem for time-delay systems. However, previous learning-based control methods are all exclusively devoted to discrete-time time-delay systems. In this article, we aim to fill in the gap by developing a learning-based VI approach to solve the infinite-dimensional algebraic Riccati equation (ARE) for continuous-time time-delay systems. One nice feature of the proposed VI approach is that an initial admissible controller is not required to start the algorithm. The efficacy of the proposed methodology is demonstrated by the example of autonomous driving. 
    more » « less
  5. This paper studies the problem of data-driven combined longitudinal and lateral control of autonomous vehicles (AVs) such that the AV can stay within a safe but minimum distance from its leading vehicle and, at the same time, in the lane. Most of the existing methods for combined longitudinal and lateral control are either model-based or developed by purely data-driven methods such as reinforcement learning. Traditional model-based control approaches are insufficient to address the adaptive optimal control design issue for AVs in dynamically changing environments and subject to model uncertainty. Moreover, the conventional reinforcement learning approaches require a large volume of data, and cannot guarantee the stability of the vehicle. These limitations are addressed by integrating the advanced control theory with reinforcement learning techniques. To be more specific, by utilizing adaptive dynamic programming techniques and using the motion data collected from the vehicles, a policy iteration algorithm is proposed such that the control policy is iteratively optimized in the absence of the precise knowledge of the AV’s dynamical model. Furthermore, the stability of the AV is guaranteed with the control policy generated at each iteration of the algorithm. The efficiency of the proposed approach is validated by SUMO simulation, a microscopic traffic simulation platform, for different traffic scenarios. 
    more » « less