skip to main content


This content will become publicly available on November 28, 2024

Title: Envelopes for multivariate linear regression with linearly constrained coefficients
Abstract

A constrained multivariate linear model is a multivariate linear model with the columns of its coefficient matrix constrained to lie in a known subspace. This class of models includes those typically used to study growth curves and longitudinal data. Envelope methods have been proposed to improve the estimation efficiency in unconstrained multivariate linear models, but have not yet been developed for constrained models. We pursue that development in this article. We first compare the standard envelope estimator with the standard estimator arising from a constrained multivariate model in terms of bias and efficiency. To further improve efficiency, we propose a novel envelope estimator based on a constrained multivariate model. We show the advantage of our proposals by simulations and by studying the probiotic capacity to reduced Salmonella infection.

 
more » « less
Award ID(s):
1916013
NSF-PAR ID:
10479342
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wileys
Date Published:
Journal Name:
Scandinavian Journal of Statistics
ISSN:
0303-6898
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    The envelope model was first introduced as a parsimonious version of multivariate linear regression. It uses dimension reduction techniques to remove immaterial variation in the data and has the potential to gain efficiency in estimation and improve prediction. Many advances have taken place since its introduction, and the envelope model has been applied to many contexts in multivariate analysis, including partial least squares, generalised linear models, Bayesian analysis, variable selection and quantile regression, among others. This article serves as a review of the envelope model and its developments for those who are new to the area.

     
    more » « less
  2. When multiple measures are collected repeatedly over time, redundancy typically exists among responses. The envelope method was recently proposed to reduce the dimension of responses without loss of information in regression with multivariate responses. It can gain substantial efficiency over the standard least squares estimator. In this paper, we generalize the envelope method to mixed effects models for longitudinal data with possibly unbalanced design and time‐varying predictors. We show that our model provides more efficient estimators than the standard estimators in mixed effects models. Improved accuracy and efficiency of the proposed method over the standard mixed effects model estimator are observed in both the simulations and the Action to Control Cardiovascular Risk in Diabetes (ACCORD) study.

     
    more » « less
  3. Summary Envelopes have been proposed in recent years as a nascent methodology for sufficient dimension reduction and efficient parameter estimation in multivariate linear models. We extend the classical definition of envelopes in Cook et al. (2010) to incorporate a nonlinear conditional mean function and a heteroscedastic error. Given any two random vectors ${X}\in\mathbb{R}^{p}$ and ${Y}\in\mathbb{R}^{r}$, we propose two new model-free envelopes, called the martingale difference divergence envelope and the central mean envelope, and study their relationships to the standard envelope in the context of response reduction in multivariate linear models. The martingale difference divergence envelope effectively captures the nonlinearity in the conditional mean without imposing any parametric structure or requiring any tuning in estimation. Heteroscedasticity, or nonconstant conditional covariance of ${Y}\mid{X}$, is further detected by the central mean envelope based on a slicing scheme for the data. We reveal the nested structure of different envelopes: (i) the central mean envelope contains the martingale difference divergence envelope, with equality when ${Y}\mid{X}$ has a constant conditional covariance; and (ii) the martingale difference divergence envelope contains the standard envelope, with equality when ${Y}\mid{X}$ has a linear conditional mean. We develop an estimation procedure that first obtains the martingale difference divergence envelope and then estimates the additional envelope components in the central mean envelope. We establish consistency in envelope estimation of the martingale difference divergence envelope and central mean envelope without stringent model assumptions. Simulations and real-data analysis demonstrate the advantages of the martingale difference divergence envelope and the central mean envelope over the standard envelope in dimension reduction. 
    more » « less
  4. Abstract

    The envelope method produces efficient estimation in multivariate linear regression, and is widely applied in biology, psychology, and economics. This paper estimates parameters through a model averaging methodology and promotes the predicting abilities of the envelope models. We propose a frequentist model averaging method by minimizing a cross‐validation criterion. When all the candidate models are misspecified, the proposed model averaging estimator is proved to be asymptotically optimal. When correct candidate models exist, the coefficient estimator is proved to be consistent, and the sum of the weights assigned to the correct models, in probability, converges to one. Simulations and an empirical application demonstrate the effectiveness of the proposed method.

     
    more » « less
  5. Summary

    Motivated by searching for associations between genetic variants and brain imaging phenotypes, the aim of this article is to develop a groupwise envelope model for multivariate linear regression in order to establish the association between both multivariate responses and covariates. The groupwise envelope model allows for both distinct regression coefficients and distinct error structures for different groups. Statistically, the proposed envelope model can dramatically improve efficiency of tests and of estimation. Theoretical properties of the proposed model are established. Numerical experiments as well as the analysis of an imaging genetic data set obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study show the effectiveness of the model in efficient estimation. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.

     
    more » « less