skip to main content


Title: Spintronic Quantum Phase Transition in a Graphene/Pb 0.24 Sn 0.76 Te Heterostructure with Giant Rashba Spin‐Orbit Coupling
Abstract

Mechanical stacking of two dissimilar materials often has surprising consequences for heterostructure behavior. In particular, a 2D electron gas (2DEG) is formed in the heterostructure of the topological crystalline insulator Pb0.24Sn0.76Te and graphene due to contact of a polar with a nonpolar surface and the resulting changes in electronic structure needed to avoid polar catastrophe. The spintronic properties of this heterostructure with non‐local spin valve devices are studied. This study observes spin‐momentum locking at lower temperatures that transitions to regular spin channel transport only at ≈40 K. Hanle spin precession measurements show a spin relaxation time as high as 2.18 ns. Density functional theory calculations confirm that the spin‐momentum locking is due to a giant Rashba effect in the material and that the phase transition is a Lifshitz transition. The theoretically predicted Lifshitz transition is further evident in the phase transition‐like behavior in the Landé g‐factor and spin relaxation time.

 
more » « less
NSF-PAR ID:
10479347
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In the presence of strong spin-independent interactions and spin-orbit coupling, we show that the spinor Bose liquid confined to one spatial dimension undergoes an interaction- or density-tuned quantum phase transition similar to one theoretically proposed for itinerant magnetic solid-state systems. The order parameter describes broken Z2inversion symmetry, with the ordered phase accompanied by non-vanishing momentum which is generated by fluctuations of an emergent dynamical gauge field at the phase transition. This quantum phase transition has dynamical critical exponentz ≃ 2, typical of a Lifshitz transition, but is described by a nontrivial interacting fixed point. From direct numerical simulation of the microscopic model, we extract previously unknown critical exponents for this fixed point. Our model describes a realistic situation of 1D ultracold atoms with Raman-induced spin-orbit coupling, establishing this system as a platform for studying exotic critical behavior of the Hertz-Millis type.

     
    more » « less
  2. null (Ed.)
    The Landau-Lifshitz-Gilbert (LLG) equation, used to model magneto-dynamics in ferromagnets, tacitly assumes that the angular momentum associated with spin precession can relax instantaneously when the real or effective magnetic field causing the precession is turned off. This neglect of “spin inertia” is unphysical and would violate energy conservation. Recently, the LLG equation was modified to account for inertia effects. The consensus, however, seems to be that such effects would be unimportant in slow magneto-dynamics that take place over time scales much longer that the relaxation time of the angular momentum, which is typically few fs to perhaps ~100 ps in ferromagnets. Here, we show that there is at least one very serious and observable effect of spin inertia even in slow magneto-dynamics. It involves the switching error probability associated with flipping the magnetization of a nanoscale ferromagnet with an external agent, such as a magnetic field. The switching may take ~ns to complete when the field strength is close to the threshold value for switching, which is much longer than the angular momentum relaxation time, and yet the effect of spin inertia is felt in the switching error probability. This is because the ultimate fate of a switching trajectory, i.e. whether it results in success or failure, is influenced by what happens in the first few ps of the switching action when nutational dynamics due to spin inertia holds sway. Spin inertia increases the error probability, which makes the switching more error-prone. This has vital technological significance because it relates to the reliability of magnetic logic and memory. 
    more » « less
  3. Abstract

    The characteristic metal–insulator phase transition (MIT) in vanadium dioxide results in nonlinear electrical transport behavior, allowing VO2devices to imitate the complex functions of neurological behavior. Chemical doping is an established method for varying the properties of the MIT, and interstitial dopant boron has been shown to generate a unique dynamic relaxation effect in individual B‐VO2particles. This paper describes the first demonstration of an electrically stimulated B‐VO2proto‐device which manifests a time‐dependent critical transformation temperature and switching voltage derived from the coupling of dopant diffusion dynamics and the metal–insulator transition of VO2. During quasi‐steady current‐driven transitions, the electrical responses of B‐VO2proto‐devices show a step‐by‐step progression through the phase transformation, evidencing domain transformations within individual particles. The dynamic relaxation effect is shown to increase the critical switching voltage by up to 41% (ΔVcrit =0.13 V) and also to increase the resistivity of the M1 phase of B‐VO2by 14%, imbuing a memristive response derived from intrinsic material properties. These observations demonstrate the dynamic relaxation effect in B‐VO2proto‐devices whose electrical transport responses can be adjusted by electronic phase transitions triggered by temperature but also by time as a result of intrinsic dynamics of interstitial dopants.

     
    more » « less
  4. Abstract

    The interface between 2D topological Dirac states and ans‐wave superconductor is expected to support Majorana‐bound states (MBS) that can be used for quantum computing applications. Realizing these novel states of matter and their applications requires control over superconductivity and spin‐orbit coupling to achieve spin‐momentum‐locked topological interface states (TIS) which are simultaneously superconducting. While signatures of MBS have been observed in the magnetic vortex cores of bulk FeTe0.55Se0.45, inhomogeneity and disorder from doping make these signatures unclear and inconsistent between vortices. Here superconductivity is reported in monolayer (ML) FeTe1–ySey(Fe(Te,Se)) grown on Bi2Te3by molecular beam epitaxy (MBE). Spin and angle‐resolved photoemission spectroscopy (SARPES) directly resolve the interfacial spin and electronic structure of Fe(Te,Se)/Bi2Te3heterostructures. Fory = 0.25, the Fe(Te,Se) electronic structure is found to overlap with the Bi2Te3TIS and the desired spin‐momentum locking is not observed. In contrast, fory = 0.1, reduced inhomogeneity measured by scanning tunneling microscopy (STM) and a smaller Fe(Te,Se) Fermi surface with clear spin‐momentum locking in the topological states are found. Hence, it is demonstrated that the Fe(Te,Se)/Bi2Te3system is a highly tunable platform for realizing MBS where reduced doping can improve characteristics important for Majorana interrogation and potential applications.

     
    more » « less
  5. null (Ed.)
    There has been much interest in the study of topological insulators (TI) recently. Due to their unique electronic structure, these new materials have been an active area of research to discover new quantum phenomena and their application in new technologies. Unlike the electronic structure observed in traditional semiconductors, the strong spin-orbit coupling induces a band inversion in the electronic structure of TIs. One of the side effects of this band inversion is creating metallic-like surface states at the material's surface that are protected by time invariance and whose spin angular momentum is locked to the direction of the momentum of the electron. These surface states are essentially resistant to scattering events that otherwise affect other materials. Leveraging the characteristic scattering resistance, the spin-momentum locking of the surface states, and the Dirac cone structure, a spin-resonant tunneling diode using topological insulators has been investigated to implement a negative differential resistance device. Utilizing the spin texture of the surface states, an additional spin-filter can help to suppress the valley current in a negative differential resistance device. In the spin-resonant tunneling diode, the tunneling process would also benefit from having protection from conventional scattering processes due to defects and thickness or line edge roughness. This research is focused on the manufacturing of a spin-filtered tunnel diode. Using molecular beam epitaxy to grow a three-layer heterostructure, with two layers of bismuth selenide as the topological insulator separated by a thin layer of tungsten diselenide as a tunnel barrier. The alignment of the Fermi levels of the topological insulator layers and the thickness of the tunnel barrier were investigated using X-ray Photoelectron Spectroscopy. The fabrication and initial electrical measurements of the spin-filtered tunnel diode were also investigated. 
    more » « less