skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Common, showy, and perennial species dominate a restoration species pool
Native seed vendors are a primary source of germplasm for restoration projects; however, most plant species are not commercially available. Preferences in the types of species that vendors grow and sell may limit the similarity between reference communities and reconstructed ones established from seed mixes. We tested whether a restoration species pool shows preference for certain groups of species, focusing on the Ozark Highland Ecoregion (midcontinent United States). We identified the pool of 1,082 candidate herbaceous plant species appropriate for restoration projects on upland habitats in this region, and then surveyed nine regional seed vendors to assess their commercial availability. Commercially available species were more likely to be forbs over graminoids, perennials over annuals, and common species with larger ranges and moderate conservatism scores. Within forbs, taller species and those with longer bloom durations were favored. Species with affinity to open habitats (e.g. grassland) were more likely to be available from multiple vendors than those from woodlands and forests. Encouragingly, 454 (42%) of the species in this regional pool were available. However, this means that most species in the region are not likely to be included in seed mixes, unless they are hand‐collected from remnant populations. This restoration pool favors common and showy species, which is consistent with previous studies showing these kinds of species tend to dominate seed mixes and restored plant communities. We identified 39 species that were not available from any of the vendors surveyed, which we recommend as candidates for expansion of the Ozark restoration species pool.  more » « less
Award ID(s):
1851727
PAR ID:
10479413
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley Periodicals LLC on behalf of Society for Ecological Restoration
Date Published:
Journal Name:
Restoration Ecology
Volume:
31
Issue:
8
ISSN:
1061-2971
Page Range / eLocation ID:
e13969
Subject(s) / Keyword(s):
conservatism, functional traits, seed mix, seed producer, seed vendor
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Alday, Josu (Ed.)
    Abstract Question Nurse–beneficiary plant interactions are often used to restore degraded habitats. However, whether and how shifts in plant–plant interactions along the facilitation–competition continuum alter revegetation success has been seldom considered. To test whether and how shifts in plant–plant interactions (due to woody species identity, study site, early life stage, and individual nurse) might alter plant recruitment and thus the success of revegetation projects, we chose a system comprising the Mediterranean dwarf palm ( Chamaerops humilis ) and seven common woody plant species. Location Two human‐degraded sites within Doñana National Park (southwestern Spain). Methods We carried out several well‐replicated field experiments to compare plant performance (seed survival, seedling emergence, seedling survival, seedling recruitment) in the presence and absence of Chamaerops humilis . Results Chamaerops humilis had marked effects on the performance of woody species that, however, changed among life stages. Depending on woody species identity, seed survival was up to 193 times greater in adjacent open spaces than beneath Chamaerops humilis . Conversely, seedling survival and recruitment were up to 19 times greater beneath Chamaerops humilis than in open spaces. Importantly, none of the studied woody species showed greater accumulated recruitment in open spaces than beneath Chamaerops humilis . Interestingly, we found strong inter‐individual palm variation in the sign and strength of their effect on woody plant performance. Conclusions We found strong seed–seedling conflicts the strength of which was species‐specific. The strong inter‐individual palm variation depicts a facilitation–competition continuum with important implications for restoration. We propose several management recommendations across different hierarchical levels (i.e., from individuals to communities) that may increase plant recruitment and therefore the success of revegetation projects. Our results are particularly relevant for restoring arid, semi‐arid and alpine landscapes worldwide where the nurse–beneficiary plant interactions are critical to ameliorating stressful conditions. 
    more » « less
  2. Ecological restoration often targets plant community recovery, but restoration success may depend on the recovery of a complex web of biotic interactions to maintain biodiversity and promote ecosystem services. Specifically, management that drives resource availability, such as seeding richness and provenance, may alter species interactions across multiple trophic levels. Using experimentally seeded prairies, we examine three key groups – plants, pollinators, and goldenrod crab spiders (Misumena vatia, predators of pollinators) – to understand the effects of species richness and admixture seed sourcing of restoration seed mixtures on multi-trophic interactions. Working with prairie plants, we experimentally manipulated seed mix richness and the number of seed source regions (single-source region or admixture seed sourcing). In each experimental prairie, we surveyed floral abundance and richness, pollinator visitation, and plant-M. vatia interactions. A high-richness seed mix increased floral abundance when seeds were sourced from a single geographic region, and floral abundance strongly increased pollinator visitation, M. vatia abundance, and prey capture. Seeding richness and admixture seed sourcing of the seed mixture did not affect floral species richness, but floral species richness increased pollinator visitation. Pollinators interacted with different floral communities across seeding treatments, indicating a shift in visited floral species with restoration practices. Synthesis and applications. Long-term success in prairie restoration requires the restoration of plant-arthropod interactions. We provide evidence that seed mix richness and admixture seed sourcing affect arthropod floral associations, but effective restoration of plant-arthropod interactions should consider total floral resource availability. Incorporating a food web perspective in restoration will strengthen approaches to whole ecosystem restoration. 
    more » « less
  3. Ecological restoration often targets plant community recovery, but restoration success may depend on the recovery of a complex web of biotic interactions to maintain biodiversity and promote ecosystem services. Specifically, management that drives resource availability, such as seeding richness and provenance, may alter species interactions across multiple trophic levels. Using experimentally seeded prairies, we examine three key groups—plants, pollinators and goldenrod crab spiders (Misumena vatia, predators of pollinators)—to understand the effects of species richness and admixture seed sourcing of restoration seed mixtures on multitrophic interactions. Working with prairie plants, we experimentally manipulated seed mix richness and the number of seed source regions (single‐source region or admixture seed sourcing). In each experimental prairie, we surveyed floral abundance and richness, pollinator visitation and plant–M. vatia interactions. A high richness seed mix increased floral abundance when seeds were sourced from a single geographic region, and floral abundance strongly increased pollinator visitation, M. vatia abundance and prey capture. Seeding richness and admixture seed sourcing of the seed mixture did not affect floral species richness, but floral species richness increased pollinator visitation. Pollinators interacted with different floral communities across seeding treatments, indicating a shift in visited floral species with restoration practices. Synthesis and applications. Long‐term success in prairie restoration requires the restoration of plant–arthropod interactions. We provide evidence that seed mix richness and admixture seed sourcing affect arthropod floral associations, but effective restoration of plant–arthropod interactions should consider total floral resource availability. Incorporating a food web perspective in restoration will strengthen approaches to whole ecosystem restoration. 
    more » « less
  4. The harsh geophysical template characterized by the urban environment combined with people’s choices has led ecologists to invoke environmental filtering as the main ecological phenomena explaining urban biodiversity patterns. Yet, dispersal is often overlooked as a driving factor, especially on expanding vacant land. Does overcoming dispersal limitation by seeding native species in urban environments and increasing the functional or phylogenetic diversity of the seeding pool increase native plant species diversity and abundance in urban vacant land? We took an experimental approach to learn how different dimensions of plant biodiversity within an augmented regional species pool, via seed additions, can explain variation in community structure over a 3-year period. Vacant lots were cleared and manipulated with seeding treatments of high or low phylogenetic and functional diversities from a pool of 28 native species. Establishment success, total native cover and native species richness were followed and compared to cleared, unseeded control lots as well as un-manipulated lots. Seeding increased native plant abundance and richness over uncleared plots, as well as cleared and unseeded control plots. Phylogenetically diverse seed mixtures had greater establishment success than mixtures composed of closely related species. Diversifying seed mixtures increased the likelihood of including species that are better able to establish on vacant land. However, there were no differences in varying levels of either functional or phylogenetic diversity. Augmenting the regional species pool via diverse seed mixtures can enhance native plant cover and richness under the harsh environmental conditions conferred by land abandonment. 
    more » « less
  5. Abstract Active restoration often aims to accelerate ecosystem recovery. However, active restoration may not be worthwhile if its effects are overwhelmed by changes that occur passively. Moreover, it can be challenging to separate the effects of passive processes, such as dispersal and natural succession, from active restoration efforts.We assess the 24‐year impact of actively restoring a Minnesota old‐field grassland via seed addition of native tallgrass prairie species. We compared the abundance of four functional plant groups in actively restored plots against abundances in three reference classes: (1) unrestored plots undergoing passive recovery within the same old field, (2) passively recovering plots in two nearby old fields of similar age and (3) a chronosequence of 21 old fields within the same landscape.Active restoration led to a higher abundance of native grasses and forbs in the 36 m2treatment plots. Seed addition was more effective if the original vegetation was first removed using herbicide, burning and tilling. However, long‐term conclusions about the efficacy of active restoration varied widely depending on the choice of reference class.In our small‐scale restoration experiment, native abundance was similarly high in both the actively restored and reference plots after 24 years, suggesting either (1) passive recovery or (2) local dispersal of native species from nearby treatment plots (i.e. cross‐contamination). In contrast, a comparison with two nearby reference fields suggested active restoration resulted in much higher native abundance relative to passive recovery. A smaller, positive effect was detected when we compared actively restored plots to the chronosequence of old fields. In the chronosequence, many passively recovering old fields had transitioned to native grass dominance naturally, although active restoration appeared to increase native forb abundance.Synthesis and applications: Our findings highlight the importance of using scale‐appropriate references for assessing the efficacy and need for active restoration. Comparing actively restored plots with the surrounding landscape, we found that active restoration and passive recovery led to similar plant communities after 24 years. Because local dispersal from actively restored sites can nearby references, caution should be exercised when evaluating long‐term restoration projects using only small‐scale experiments. 
    more » « less