skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coral Reef Population Genomics in an Age of Global Change
Coral reefs are both exceptionally biodiverse and threatened by climate change and other human activities. Here, we review population genomic processes in coral reef taxa and their importance for understanding responses to global change. Many taxa on coral reefs are characterized by weak genetic drift, extensive gene flow, and strong selection from complex biotic and abiotic environments, which together present a fascinating test of microevolutionary theory. Selection, gene flow, and hybridization have played and will continue to play an important role in the adaptation or extinction of coral reef taxa in the face of rapid environmental change, but research remains exceptionally limited compared to the urgent needs. Critical areas for future investigation include understanding evolutionary potential and the mechanisms of local adaptation, developing historical baselines, and building greater research capacity in the countries where most reef diversity is concentrated.  more » « less
Award ID(s):
1743711 2129351
PAR ID:
10479802
Author(s) / Creator(s):
; ;
Publisher / Repository:
Annual Reviews
Date Published:
Journal Name:
Annual Review of Genetics
Volume:
57
Issue:
1
ISSN:
0066-4197
Page Range / eLocation ID:
87 to 115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent warm temperatures driven by climate change have caused mass coral bleaching and mortality across the world, prompting managers, policymakers, and conservation practitioners to embrace restoration as a strategy to sustain coral reefs. Despite a proliferation of new coral reef restoration efforts globally and increasing scientific recognition and research on interventions aimed at supporting reef resilience to climate impacts, few restoration programs are currently incorporating climate change and resilience in project design. As climate change will continue to degrade coral reefs for decades to come, guidance is needed to support managers and restoration practitioners to conduct restoration that promotes resilience through enhanced coral reef recovery, resistance, and adaptation. Here, we address this critical implementation gap by providing recommendations that integrate resilience principles into restoration design and practice, including for project planning and design, coral selection, site selection, and broader ecosystem context. We also discuss future opportunities to improve restoration methods to support enhanced outcomes for coral reefs in response to climate change. As coral reefs are one of the most vulnerable ecosystems to climate change, interventions that enhance reef resilience will help to ensure restoration efforts have a greater chance of success in a warming world. They are also more likely to provide essential contributions to global targets to protect natural biodiversity and the human communities that rely on reefs. 
    more » « less
  2. Abstract The potential of reef‐building corals to adapt to increasing sea‐surface temperatures is often debated but has rarely been comprehensively modeled on a region‐wide scale. We used individual‐based simulations to model adaptation to warming in a coral metapopulation comprising 680 reefs and representing the whole of the Central Indo‐West Pacific. Encouragingly, some reefs—most notably Vietnam, Japan, Taiwan, New Caledonia and the southern half of the Great Barrier Reef—exhibited high capacity for adaptation and, in our model, maintained coral cover even under a rapid “business‐as‐usual” warming scenario throughout the modeled period (200 years). Higher resilience of these reefs was observed under all tested parameter settings except the models prohibiting selection and/or migration during warming. At the same time, the majority of reefs in the region tended to collapse within the first 100 years of warming. The adaptive potential (odds of maintaining high coral cover) of a given reef could be predicted based on two metrics: the reef's present‐day temperature, and the proportion of recruits immigrating from warmer locations. The latter metric explains the most variation in adaptive potential, and significantly correlates with actual coral cover changes observed throughout the region between the 1970s and the early 2000s. These findings will help prioritize coral conservation efforts and plan assisted gene flow interventions to boost the adaptive potential of specific coral populations. 
    more » « less
  3. Coral reefs throughout the tropics have experienced large declines in abundance of scleractinian corals over the last few decades, and some reefs are becoming functionally dominated by animal taxa other than scleractinians. This phenomenon is striking on many shallow reefs in the tropical western Atlantic, where arborescent octocorals now are numerically and functionally dominant. Octocorals are one of several taxa that have been overlooked for decades in analyses of coral reef community dynamics, and our understanding of why octocorals are favored (whereas scleractinians are not) on some modern reefs, and how they will affect the function of future reef communities, is not commensurate with the task of scientifically responding to the coral reef crisis. We summarize the biological and ecological features predisposing octocorals for success under contemporary conditions, and focus on those features that could have generated resistance and resilience of octocoral populations to environmental change on modern reefs. There is a rich set of opportunities for rapid advancement in understanding the factors driving the success of octocorals on modern reefs, but we underscore three lines of inquiry: (1) the functional implications of strongly mixotrophic, polytrophic, and plastic nutrition, (2) the capacity to recruit at high densities and maintain rapid initial rates of vertical growth, and (3) the emergent properties associated with dense animal forests at high colony densities. 
    more » « less
  4. Mesophotic coral reefs, currently defined as deep reefs between 30 and 150 m, are linked physically and biologically to their shallow water counterparts, have the potential to be refuges for shallow coral reef taxa such as coral and sponges, and might be a source of larvae that could contribute to the resiliency of shallow water reefs. Mesophotic coral reefs are found worldwide, but most are undescribed and understudied. Here, we review our current knowledge of mesophotic coral reefs and their functional ecology as it relates to their geomorphology, changes in the abiotic environment along depth gradients, trophic ecology, their reproduction, and their connectivity to shallow depths. Understanding the ecology of mesophotic coral reefs, and the connectivity between them and their shallow water counterparts, is now a primary focus for many reef studies as the worldwide degradation of shallow coral reefs, and the ecosystem services they provide, continues unabated. 
    more » « less
  5. Meyer, Julie L (Ed.)
    High molecular weight (HMW; >1 kDa) carbohydrates are a major component of dissolved organic matter (DOM) released by benthic primary producers. Despite shifts from coral to algae dominance on many reefs, little is known about the effects of exuded carbohydrates on bacterioplankton communities in reef waters. We compared the monosaccharide composition of HMW carbohydrates exuded by hard corals and brown macroalgae and investigated the response of the bacterioplankton community of an algae-dominated Caribbean reef to the respective HMW fractions. HMW coral exudates were compositionally distinct from the ambient, algae-dominated reef waters and similar to coral mucus (high in arabinose). They further selected for opportunistic bacterioplankton taxa commonly associated with coral stress (i.e.,Rhodobacteraceae,Phycisphaeraceae,Vibrionaceae, andFlavobacteriales) and significantly increased the predicted energy-, amino acid-, and carbohydrate-metabolism by 28%, 44%, and 111%, respectively. In contrast, HMW carbohydrates exuded by algae were similar to those in algae tissue extracts and reef water (high in fucose) and did not significantly alter the composition and predicted metabolism of the bacterioplankton community. These results confirm earlier findings of coral exudates supporting efficient trophic transfer, while algae exudates may have stimulated microbial respiration instead of biomass production, thereby supporting the microbialization of reefs. In contrast to previous studies, HMW coral and not algal exudates selected for opportunistic microbes, suggesting that a shift in the prevalent DOM composition and not the exudate type (i.e., coral vs algae)per se, may induce the rise of opportunistic microbial taxa. IMPORTANCEDissolved organic matter (DOM) released by benthic primary producers fuels coral reef food webs. Anthropogenic stressors cause shifts from coral to algae dominance on many reefs, and resulting alterations in the DOM pool can promote opportunistic microbes and potential coral pathogens in reef water. To better understand these DOM-induced effects on bacterioplankton communities, we compared the carbohydrate composition of coral- and macroalgae-DOM and analyzed the response of bacterioplankton from an algae-dominated reef to these DOM types. In line with the proposed microbialization of reefs, coral-DOM was efficiently utilized, promoting energy transfer to higher trophic levels, whereas macroalgae-DOM likely stimulated microbial respiration over biomass production. Contrary to earlier findings, coral- and not algal-DOM selected for opportunistic microbial taxa, indicating that a change in the prevalent DOM composition, and not DOM type, may promote the rise of opportunistic microbes. Presented results may also apply to other coastal marine ecosystems undergoing benthic community shifts. 
    more » « less