skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lithium Niobite on Silicon High Speed Spatial Light Modulator
We present a device of thin film lithium niobite integrated on a CMOS backplane, enhanced by a high quality factor guided mode resonance. The device offers GHz speed and megapixel degrees-of-freedom spatial light modulation.  more » « less
Award ID(s):
1747426
PAR ID:
10479829
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optica Publishing Group
Date Published:
ISBN:
978-1-957171-25-8
Page Range / eLocation ID:
SF1E.4
Format(s):
Medium: X
Location:
San Jose, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. Grewal, Harpreet Singh (Ed.)
    Study objectiveThis study aimed to prospectively validate the performance of an artificially augmented home sleep apnea testing device (WVU-device) and its patented technology. MethodologyThe WVU-device, utilizing patent pending (US 20210001122A) technology and an algorithm derived from cardio-pulmonary physiological parameters, comorbidities, and anthropological information was prospectively compared with a commercially available and Center for Medicare and Medicaid Services (CMS) approved home sleep apnea testing (HSAT) device. The WVU-device and the HSAT device were applied on separate hands of the patient during a single night study. The oxygen desaturation index (ODI) obtained from the WVU-device was compared to the respiratory event index (REI) derived from the HSAT device. ResultsA total of 78 consecutive patients were included in the prospective study. Of the 78 patients, 38 (48%) were women and 9 (12%) had a Fitzpatrick score of 3 or higher. The ODI obtained from the WVU-device corelated well with the HSAT device, and no significant bias was observed in the Bland-Altman curve. The accuracy for ODI > = 5 and REI > = 5 was 87%, for ODI> = 15 and REI > = 15 was 89% and for ODI> = 30 and REI of > = 30 was 95%. The sensitivity and specificity for these ODI /REI cut-offs were 0.92 and 0.78, 0.91 and 0.86, and 0.94 and 0.95, respectively. ConclusionThe WVU-device demonstrated good accuracy in predicting REI when compared to an approved HSAT device, even in patients with darker skin tones. 
    more » « less
  2. Abstract Rapid advances in the Internet‐of‐Things (IoT) domain have led to the development of several useful and interesting devices that have enhanced the quality of home living and industrial automation. The vulnerabilities in the IoT devices have rendered them susceptible to compromise and forgery. The problem of device authentication, that is, the question of whether a device's identity is what it claims to be, is still an open problem. Device fingerprinting seems to be a promising authentication mechanism. Device fingerprinting profiles a device based on information available about the device and generate a robust, verifiable and unique identity for the device. Existing approaches for device fingerprinting may not be feasible or cost‐effective for the IoT domain due to the resource constraints and heterogeneity of the IoT devices. Due to resource and cost constraints, behavioral fingerprinting provides promising directions for fingerprinting IoT devices. Behavioral fingerprinting allows security researchers to understand the behavioral profile of a device and to establish some guidelines regarding the device operations. In this article, we discuss existing approaches for behavioral fingerprinting of devices in general and evaluate their applicability for IoT devices. Furthermore, we discuss potential approaches for fingerprinting IoT devices and give an overview of some of the preliminary attempts to fingerprint IoT devices. We conclude by highlighting the future research directions for fingerprinting in the IoT domain. This article is categorized under:Application Areas > Science and TechnologyApplication Areas > InternetTechnologies > Machine LearningApplication Areas > Industry Specific Applications 
    more » « less
  3. The self‐powered and autonomous sensors are incredibly important in advanced engineering, especially defence science. The increasing necessity of simple and smart electronics requires to be sustainably flexible, wearable, and waterproof. Triboelectricity has been a widely used mechanism for motion sensing nowadays. Almost all devices based on triboelectricity require contact between two surfaces. Herein, a touchless triboelectric motion sensor for human motion sensing and movement monitoring is developed. The device was primarily fabricated using simple latex (cis‐1,4‐polyisoprene) structures and copper (electrode materials), which make it a very cost‐effective device for sensory applications. The device is tested with specimens of different areas and heights in motion. The maximum output of the device is noted as 12 V at a specimen height of 5 cm. Further different types of human motions are applied in front of the device to ensure low energy sensitivity using triboelectric phenomena. The lightweight smart device precisely provides significant output signals for each movement of the human body which makes the device a prospective medium for motion sensing and movement monitoring which can be applied in the fields of security, energy, and medicine. 
    more » « less
  4. Strain localization in microelectronic devices commonly arises from device geometry, materials, and fabrication processing. In this study, we controllably relieve the local strain field of AlGaN/GaN HEMTs by milling micro-trenches underneath the channel and compare the device performance as a function of the relieved strain as well as radiation dosage. Micro-Raman results suggest that the trenches locally relax the strain in device layers, decreasing the 2DEG density and mobility. Intriguingly, such strain relaxation is shown to minimize the radiation damage, measured after 10 Mrads of 60Co-gamma exposure. For example, a 6-trench device showed only ∼8% and ∼6% decrease in saturation drain current and maximum transconductance, respectively, compared to corresponding values of ∼15% and ∼30% in a no-trench device. Negative and positive threshold voltage shifts are observed in 6-trench and no-trench devices, respectively, after gamma radiation. We hypothesize that the extent of gamma radiation damage depends on the strain level in the devices. Thus, even though milling a trench decreases 2DEG mobility, such decrease under gamma radiation is far less in a 6-trench device (∼1.5%) compared to a no-trench device (∼20%) with higher built-in strain. 
    more » « less
  5. Photonic crystals can be engineered so that the flow of optical power and the phase of the field are independently controlled. The concept is demonstrated by creating a self-collimating lattice with an embedded cylindrical lens. The device is fabricated in a photopolymer by multi-photon lithography with the lattice spacing chosen for operation around the telecom wavelength of 1550 nm. The lattice is based on a low-symmetry rod-in-wall unit cell that strongly self-collimates light. The walls are varied in thickness to modulate the effective refractive index so light acquires a spatially quadratic phase profile as it propagates through the device. Although the phase of the field is altered, the light does not focus within the device because self-collimation forces power to flow parallel to the principal axes of the lattice. Upon exiting the device, ordinary propagation resumes in free space and the curved phase profile causes the light to focus. An analysis of the experimentally observed optical behavior shows that the device behaves like a thin lens, even though the device is considerably thick. 
    more » « less