skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cylindrical-lens-embedded photonic crystal based on self-collimation
Photonic crystals can be engineered so that the flow of optical power and the phase of the field are independently controlled. The concept is demonstrated by creating a self-collimating lattice with an embedded cylindrical lens. The device is fabricated in a photopolymer by multi-photon lithography with the lattice spacing chosen for operation around the telecom wavelength of 1550 nm. The lattice is based on a low-symmetry rod-in-wall unit cell that strongly self-collimates light. The walls are varied in thickness to modulate the effective refractive index so light acquires a spatially quadratic phase profile as it propagates through the device. Although the phase of the field is altered, the light does not focus within the device because self-collimation forces power to flow parallel to the principal axes of the lattice. Upon exiting the device, ordinary propagation resumes in free space and the curved phase profile causes the light to focus. An analysis of the experimentally observed optical behavior shows that the device behaves like a thin lens, even though the device is considerably thick.  more » « less
Award ID(s):
1711356
PAR ID:
10531182
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
6
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 9165
Size(s):
Article No. 9165
Sponsoring Org:
National Science Foundation
More Like this
  1. A binary-lens-embedded photonic crystal (B-LEPC) was designed for operation at 1550 nm and fabricated by multiphoton lithography. The lens is binary in the sense that optical path difference is generated using unit cells having just two distinct fill factors. The unit cells have a “rod-in-wall” structure that exhibits three-dimensional self-collimation. Simulations show that self-collimation forces light to move through the device without diffracting or focusing, even as the wavefront is reshaped by the lensing region. Upon exiting the device, the curved wavefront causes the light to focus. The thickness of a B-LEPC was reduced threefold by wrapping phase in the style of a Fresnel lens. Embedding a faster-varying phase profile enables tighter focusing, and numerical apertureNA = 0.59 was demonstrated experimentally. 
    more » « less
  2. Abstract Techniques to mold the flow of light on subwavelength scales enable fundamentally new optical systems and device applications. The realization of programmable, active optical systems with fast, tunable components is among the outstanding challenges in the field. Here, we experimentally demonstrate a few-pixel beam steering device based on electrostatic gate control of excitons in an atomically thin semiconductor with strong light-matter interactions. By combining the high reflectivity of a MoSe2monolayer with a graphene split-gate geometry, we shape the wavefront phase profile to achieve continuously tunable beam deflection with a range of 10°, two-dimensional beam steering, and switching times down to 1.6 nanoseconds. Our approach opens the door for a new class of atomically thin optical systems, such as rapidly switchable beam arrays and quantum metasurfaces operating at their fundamental thickness limit. 
    more » « less
  3. Wide-angle, broadband self-collimation (SC) is demonstrated in a hexagonal photonic crystal (PhC) fabricated in a low-refractive-index photopolymer by multiphoton lithography. The PhC can be described as a hexagonal array of cylindrical air holes in a block of dielectric material having a low-refractive index. Optical characterization shows that the device strongly self-collimates light at near-infrared wavelengths that span 1360 to 1610 nm. SC forces light to flow along the extrusion direction of the lattice without diffractive spreading, even when light couples into the device at high oblique angles. Numerical simulations corroborate the experimental findings. 
    more » « less
  4. Abstract Miniature lenses with a tunable focus are essential components for many modern applications involving compact optical systems. While several tunable lenses have been reported with various tuning mechanisms, they often face challenges with respect to power consumption, tuning speed, fabrication cost, or production scalability. In this work, we have adapted the mechanism of an Alvarez lens – a varifocal composite lens in which lateral shifts of two optical elements with cubic phase surfaces give rise to a change in the optical power – to construct a miniature, microelectromechanical system (MEMS)-actuated metasurface Alvarez lens. Implementation based on an electrostatic MEMS generates fast and controllable actuation with low power consumption. The utilization of metasurfaces – ultrathin and subwavelength-patterned diffractive optics – as optical elements greatly reduces the device volume compared to systems using conventional freeform lenses. The entire MEMS Alvarez metalens is fully compatible with modern semiconductor fabrication technologies, granting it the potential to be mass-produced at a low unit cost. In the reported prototype operating at 1550 nm wavelength, a total uniaxial displacement of 6.3 µm was achieved in the Alvarez metalens with a direct-current (DC) voltage application up to 20 V, which modulated the focal position within a total tuning range of 68 µm, producing more than an order of magnitude change in the focal length and a 1460-diopter change in the optical power. The MEMS Alvarez metalens has a robust design that can potentially generate a much larger tuning range without substantially increasing the device volume or energy consumption, making it desirable for a wide range of imaging and display applications. 
    more » « less
  5. A conventional optical lens can enhance lateral resolution in optical coherence tomography (OCT) by focusing the input light onto the sample. However, the typical Gaussian beam profile of such a lens will impose a tradeoff between the depth of focus (DOF) and the lateral resolution. The lateral resolution is often compromised to achieve amm-scale DOF. We have experimentally shown that using a cascade system of an ultrasonic virtual tunable optical waveguide (UVTOW) and a short focal-length lens can provide a large DOF without severely compromising the lateral resolution compared to an external lens with the same effective focal length. In addition, leveraging the reconfigurability of UVTOW, we show that the focal length of the cascade system can be tuned without the need for mechanical translation of the optical lens. We compare the performance of the cascade system with a conventional optical lens to demonstrate enhanced DOF without compromising the lateral resolution as well as reconfigurability of UVTOW for OCT imaging. 
    more » « less