skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The influence of photosymbiosis in Cassiopea xamachana regenerative success
The regenerative capacity of Scyphozoans (Phylum Cnidaria) has been relatively understudied. The model organism Cas- siopea xamachana hosts photosynthetic dinoflagellate symbionts in the host’s motile amoebocyte cells. A handful of studies have reported regeneration in the polyps of C. xamachana, but the mechanisms underlying regeneration have not been fully explored. Despite undergoing drastic developmental changes when symbiotic, the effect of symbiont presence and species on host regeneration has never been explored. C. xamachana polyps were decapitated when aposymbiotic, and symbiotic with both a homologous and a heterologous symbiont species. Regeneration and asexual budding were observed, and EdU labeling was performed to observe patterns of cell proliferation in regenerating polyps. The presence of symbionts increased likelihood to regenerate, yet symbiont species did not affect success of regeneration. No blastema or dividing cells were observed, implying cell proliferation is not the primary mechanism behind regeneration in polyps of C. xamachana.  more » « less
Award ID(s):
2227070
PAR ID:
10479949
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Symbiosis
Volume:
90
Issue:
1
ISSN:
0334-5114
Page Range / eLocation ID:
61 to 70
Subject(s) / Keyword(s):
Scyphozoa Wound healing Upside-down jellyfish Cell proliferation Regeneration Symbiodiniaceae
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ability of symbionts to recolonize their hosts after a period of dysbiosis is essential to maintain a resilient partnership. Many cnidarians rely on photosynthate provided from a large algal symbiont population. Under periods of thermal stress, symbiont densities in host cnidarians decline, and the recovery of hosts is dependent on the re-establishment of symbiosis. The cellular mechanisms that govern this process of colonization are not well-defined and require further exploration. To study this process in the symbiotic sea anemone model Exaiptasia diaphana , commonly called Aiptasia, we developed a non-invasive, efficient method of imaging that uses autofluorescence to measure the abundance of symbiont cells, which were spatially distributed into distinct cell clusters within the gastrodermis of host tentacles. We estimated cell cluster sizes to measure the occurrence of singlets, doublets, and so on up to much larger cell clusters, and characterized colonization patterns by native and non-native symbionts. Native symbiont Breviolum minutum rapidly recolonized hosts and rapidly exited under elevated temperature, with increased bleaching susceptibility for larger symbiont clusters. In contrast, populations of non-native symbionts Symbiodinium microadriaticum and Durusdinium trenchii persisted at low levels under elevated temperature. To identify mechanisms driving colonization patterns, we simulated symbiont population changes through time and determined that migration was necessary to create observed patterns (i.e., egression of symbionts from larger clusters to establish new clusters). Our results support a mechanism where symbionts repopulate hosts in a predictable cluster pattern, and provide novel evidence that colonization requires both localized proliferation and continuous migration. 
    more » « less
  2. Insects harbor a variety of maternally inherited bacterial symbionts. As such, variation in symbiont presence/absence, in the combinations of harbored symbionts, and in the genotypes of harbored symbiont species provide heritable genetic variation of potential use in the insects’ adaptive repertoires. Understanding the natural importance of symbionts is challenging but studying their dynamics over time can help to elucidate the potential for such symbiont-driven insect adaptation. Toward this end, we studied the seasonal dynamics of six maternally transferred bacterial symbiont species in the multivoltine pea aphid (Acyrthosiphon pisum). Our sampling focused on six alfalfa fields in southeastern Pennsylvania, and spanned 14 timepoints within the 2012 growing season, in addition to two overwintering periods. To test and generate hypotheses on the natural relevance of these non-essential symbionts, we examined whether symbiont dynamics correlated with any of ten measured environmental variables from the 2012 growing season, including some of known importance in the lab. We found that five symbionts changed prevalence across one or both overwintering periods, and that the same five species underwent such frequency shifts across the 2012 growing season. Intriguingly, the frequencies of these dynamic symbionts showed robust correlations with a subset of our measured environmental variables. Several of these trends supported the natural relevance of lab-discovered symbiont roles, including anti-pathogen defense. For a seventh symbiont—Hamiltonella defensa—studied previously across the same study periods, we tested whether a reported correlation between prevalence and temperature stemmed not from thermally varying host-level fitness effects, but from selection on co-infecting symbionts or on aphid-encoded alleles associated with this bacterium. In general, such “hitchhiking” effects were not evident during times with strongly correlated Hamiltonella and temperature shifts. However, we did identify at least one time period in which Hamiltonella spread was likely driven by selection on a co-infecting symbiont—Rickettsiella viridis. Recognizing the broader potential for such hitchhiking, we explored selection on co-infecting symbionts as a possible driver behind the dynamics of the remaining six species. Out of twelve examined instances of symbiont dynamics unfolding across 2-week periods or overwintering spans, we found eight in which the focal symbiont underwent parallel frequency shifts under single infection and one or more co-infection contexts. This supported the idea that phenotypic variation created by the presence/absence of individual symbionts is a direct target for selection, and that symbiont effects can be robust under co-habitation with other symbionts. Contrastingly, in two cases, we found that selection may target phenotypes emerging from symbiont co-infections, with specific species combinations driving overall trends for the focal dynamic symbionts, without correlated change under single infection. Finally, in three cases—including the one described above for Hamiltonella—our data suggested that incidental co-infection with a (dis)favored symbiont could lead to large frequency shifts for “passenger” symbionts, conferring no apparent cost or benefit. Such hitchhiking has rarely been studied in heritable symbiont systems. We propose that it is more common than appreciated, given the widespread nature of maternally inherited bacteria, and the frequency of multi-species symbiotic communities across insects. 
    more » « less
  3. Climate change threatens symbiotic cnidarians’ survival by causing photosymbiosis breakdown in a process known as bleaching. Direct effects of temperature on cnidarian host physiology remain difficult to describe because heatwaves depress symbiont performance, leading to host stress and starvation. The symbiotic sea anemone Exaiptasia diaphana provides an opportune system to disentangle direct vs. indirect heat effects on the host, since it can survive indefinitely without symbionts. We tested the hypothesis that heat directly impairs cnidarian physiology by comparing symbiotic and aposymbiotic individuals of two laboratory subpopulations of a commonly used clonal strain of E. diaphana, CC7. We exposed anemones to a range of temperatures (ambient, +2°C, +4°C, +6°C) for 15–18 days, then measured their symbiont population densities, autotrophic carbon assimilation and translocation, photosynthesis, respiration, and host intracellular pH (pHi). Symbiotic anemones from the two subpopulations differed in size and symbiont density and exhibited distinct heat stress responses, highlighting the importance of acclimation to different laboratory conditions. Specifically, the cohort with higher initial symbiont densities experienced dose-dependent symbiont loss with increasing temperature and a corresponding decline in host photosynthate accumulation. In contrast, the cohort with lower initial symbiont densities did not lose symbionts or assimilate less photosynthate when heated, similar to the response of aposymbiotic anemones. However, anemone pHi decreased at higher temperatures regardless of cohort, symbiont presence, or photosynthate translocation, indicating that heat consistently disrupts cnidarian acid-base homeostasis independent of symbiotic status or mutualism breakdown. Thus, pH regulation may be a critical vulnerability for cnidarians in a changing climate. 
    more » « less
  4. In marine ecosystems, increased global-scale transportation creates opportunities for rapid introduction of invasive parasitic species that, in some cases, result in dramatic shifts within the native communities. A lack of detailed knowledge regarding the ecology of invasive marine parasites hinders our ability to develop effective conservation strategies and avoid unforeseen ecological consequences. We examined co-infestation patterns of a highly pathogenic, introduced parasitic isopod (Orthione griffenis) and a native symbiotic clam (Neaeromya rugifera) on the North American native blue mud shrimp Upogebia pugettensis. Our comparisons included infestations of O. griffenis and N. rugifera among 447 U. pugettensis hosts over 3 study years and were designed to statistically assess whether the 2 symbionts exhibited significant associations with one another. Our results indicate that infestations by the 2 symbiont species are positively correlated, such that the presence of one symbiont is a strong, positive predictor for the presence of the other. For both symbionts, host size is an important factor that drives the observed correlation. Host sex is also influential for O. griffenis. Interestingly, even after accounting for these host attributes, the infestations by the 2 symbionts continue to correlate positively, particularly among older (second-year and beyond) symbionts, highlighting the likely influence of additional host and environmental factors in driving the symbiont correlation post-settlement. We consider potential mechanisms, including differential energetic reserves and longevities between infested and co-infested hosts, in detail. These results offer insights into the ecological drivers of symbiont co-infestation, which have important implications for understanding host-parasite interactions and future conservation measures. 
    more » « less
  5. Mutualistic symbioses are common, especially in nutrient-poor environments where an association between hosts and symbionts can allow the symbiotic partners to persist and collectively out-compete non-symbiotic species. Usually these mutualisms are built on an intimate transfer of energy and nutrients (e.g. carbon and nitrogen) between host and symbiont. However, resource availability is not consistent, and the benefit of the symbiotic association can depend on the availability of resources to mutualists. We manipulated the diets of two temperate sea anemone species in the genus Anthopleura in the field and recorded the responses of sea anemones and algal symbionts in the family Symbiodiniaceae to our treatments. Algal symbiont density, symbiont volume and photosynthetic efficiency of symbionts responded to changes in sea anemone diet, but the responses depended on the species of sea anemone. We suggest that temperate sea anemones and their symbionts can respond to changes in anemone diet, modifying the balance between heterotrophy and autotrophy in the symbiosis. Our data support the hypothesis that symbionts are upregulated or downregulated based on food availability, allowing for a flexible nutritional strategy based on external resources. 
    more » « less