skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ortho ‐Boronic Acid Carbonyl Compounds and Their Applications in Chemical Biology**
Abstract Iminoboronates and diazaborines are related classes of compounds that feature an imineorthoto an arylboronic acid (iminoboronate) or a hydrazone that cyclizes with anorthoarylboronic acid (diazaborine). Rather than acting as independent chemical motifs, the arylboronic acid impacts the rate of imine/hydrazone formation, hydrolysis, and exchange with competing nucleophiles. Increasing evidence has shown that the imine/hydrazone functionality also impacts arylboronic acid reactivity toward diols and reactive oxygen and nitrogen species (ROS/RNS). Untangling the communication between C=N linked functionalities and arylboronic acids has revealed a powerful and tunable motif for bioconjugation chemistries and other applications in chemical biology. Here, we survey the applications of iminoboronates and diazaborines in these fields with an eye toward understanding their utility as a function of neighboring group effects.  more » « less
Award ID(s):
2238563
PAR ID:
10480005
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
30
Issue:
7
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A new family of hydrazone modified cytidine phosphoramidite building block was synthesized and incorporated into oligodeoxynucleotides to construct photoswitchable DNA strands. TheE‐Zisomerization triggered by the irradiation of blue light with a wavelength of 450 nm was investigated and confirmed by1H NMR spectroscopy and HPLC in the contexts of both nucleoside and oligodeoxynucleotide. The light activatedZform isomer of this hydrazone‐cytidine with a six‐member intramolecular hydrogen bond was found to inhibit DNA synthesis in the primer extension model by usingBstDNA polymerase. In addition, the hydrazone modification caused the misincorporation of dATP together with dGTP into the growing DNA strand with similar selectivity, highlighting a potential G to A mutation. This work provides a novel functional DNA building block and an additional molecular tool that has potential chemical biology and biomedicinal applications to control DNA synthesis and DNA‐enzyme interactions using the cell friendly blue light irradiation. 
    more » « less
  2. Abstract ortho‐Phenylenes are one of the simplest classes of aromatic foldamers, adopting helical geometries because of aromatic stacking interactions. The folding and misfolding ofortho‐phenylenes are slow on the NMR timescale at or below room temperature, allowing detection of folding states using1H NMR spectroscopy. Herein, anortho‐phenylene hexamer is coupled with a RAFT chain transfer agent (CTA) on each repeat unit. A variety of acrylic monomers are polymerized onto the CTA‐functionalizedortho‐phenylene using PET‐RAFT to yield functionalized star polymers withortho‐phenylene cores. The steric bulk of the acrylate monomer units as well as the chain length of each arm of the star polymer is varied.1H NMR spectroscopy shows that the folding of theortho‐phenylenes do not vary, providing a robust helical core for star polymer systems. 
    more » « less
  3. Bose, Arpita (Ed.)
    ABSTRACT Efforts toward microbial conversion of lignin to value-added products face many challenges because lignin’s methoxylated aromatic monomers release toxic C1byproducts such as formaldehyde. The ability to grow on methoxylated aromatic acids (e.g., vanillic acid) has been identified in certain clades of methylotrophs, bacteria characterized by their unique ability to tolerate and metabolize high concentrations of formaldehyde. Here, we use a phyllosphere methylotroph isolate,Methylobacterium extorquensSLI 505, as a model to identify the fate of formaldehyde during methylotrophic growth on vanillic acid.M. extorquensSLI 505 displays concentration-dependent growth phenotypes on vanillic acid without concomitant formaldehyde accumulation. We conclude thatM. extorquensSLI 505 overcomes metabolic bottlenecks from simultaneous assimilation of multicarbon and C1intermediates by allocating formaldehyde toward dissimilation and assimilating the ring carbons of vanillic acid heterotrophically. We correlate this strategy with maximization of bioenergetic yields and demonstrate that formaldehyde dissimilation for energy generation rather than formaldehyde detoxification is advantageous for growth on aromatic acids.M. extorquensSLI 505 also exhibits catabolite repression during growth on methanol and low concentrations of vanillic acid, but no diauxic patterns during growth on methanol and high concentrations of vanillic acid. Results from this study outline metabolic strategies employed byM. extorquensSLI 505 for growth on a complex single substrate that generates both C1and multicarbon intermediates and emphasizes the robustness ofM. extorquensfor biotechnological applications for lignin valorization.IMPORTANCELignin, one of the most abundant and renewable carbon sources on Earth, is a promising alternative to non-renewable fossil fuels used to produce petrochemicals. Degradation of lignin releases toxic C1byproducts such as formaldehyde, and thus most microorganisms are not suitable for biorefining lignin. By contrast,Methylobacterium extorquensSLI 505 is capable of growth on high concentrations of aromatic acids without concomitant formaldehyde accumulation. In addition, we show that the growth ofM. extorquensSLI 505 on aromatic acids is coupled to the production of the bioplastic, polyhydroxybutyrate. Aromatic acids serve as a model by which to understand howM. extorquensSLI 505 balances methylotrophic and heterotrophic pathways during growth to provide strategies for growth optimization when using complex substrates in both ecological and industrial fermentation applications. 
    more » « less
  4. Abstract The sensitized photooxidation ofortho‐prenyl phenol is described with evidence that solvent aproticity favors the formation of a dihydrobenzofuran [2‐(prop‐1‐en‐2‐yl)‐2,3‐dihydrobenzofuran], a moiety commonly found in natural products. Benzene solvent increased the total quenching rate constant (kT) of singlet oxygen with prenyl phenol by ~10‐fold compared to methanol. A mechanism is proposed with preferential addition of singlet oxygen to prenyl site due to hydrogen bonding with the phenol OH group, which causes a divergence away from the singlet oxygen ‘ene’ reaction toward the dihydrobenzofuran as the major product. The reaction is a mixed photooxidized system since an epoxide arises by a type I sensitized photooxidation. 
    more » « less
  5. Abstract This computational study explores the copper (I) chloride catalyzed synthesis of (E)‐1‐(2,2‐dichloro‐1‐phenylvinyl)‐2‐phenyldiazene (2Cl‐VD) from readily available hydrazone derivative and carbon tetrachloride (CCl4).2Cl‐VDhas been extensively utilized to synthesize variety of heterocyclic organic compounds in mild conditions. The present computational investigations primarily focus on understanding the role of copper (I) andN1,N1,N2,N2‐tetramethylethane‐1,2‐diamine (TMEDA) in this reaction, TMEDA often being considered a proton scavenger by experimentalists. Considering TMEDA as a ligand significantly alters the energy barrier. In fact, it is only 8.3 kcal/mol higher compared to the ligand‐free (LF) route for the removal of a chlorine atom to form the radical·CCl3but the following steps are almost barrierless. This intermediate then participates in attacking the electrophilic carbon in the hydrazone. Crucially, the study reveals that the overall potential energy surface is thermodynamically favorable, and the theoretical turnover frequency (TOF) value is higher in the case of Cu(I)‐TMEDA complex catalyzed pathway. 
    more » « less