skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Meteorological Research Enabled by Rapid-Scan Radar Technology
Abstract The scientific community has long acknowledged the importance of high-temporal-resolution radar observations to advance science research and improve high-impact weather prediction. Development of innovative rapid-scan radar technologies over the past two decades has enabled radar volume scans of 10–60 s compared to 3–5 min with traditional parabolic dish research radars and the WSR-88D radar network. This review examines the impact of rapid-scan radar technology, defined as radars collecting volume scans in 1 min or less, on atmospheric science research spanning different subdisciplines and evaluates the strengths and weaknesses of the use of rapid-scan radars. In particular, a significant body of literature has accumulated for tornado and severe thunderstorm research and forecasting applications, in addition to a growing number of studies of convection. Convection research has benefited substantially from more synchronous vertical views, but could benefit more substantially by leveraging multi-Doppler wind retrievals and complementary in situ and remote sensors. In addition, several years of forecast evaluation studies are synthesized from radar testbed experiments, and the benefits of assimilating rapid-scan radar observations are analyzed. Although the current body of literature reflects the considerable utility of rapid-scan radars to science research, a weakness is that limited advancements in understanding of the physical mechanisms behind observed features have been enabled. There is considerable opportunity to bridge the gap in physical understanding with the current technology using coordinated efforts to include rapid-scan radars in field campaigns and expanding the breadth of meteorological phenomena studied. Significance StatementRecently developed rapid-scan radar technologies, capable of collecting volumetric (i.e., three-dimensional) measurements in 10–60 s, have improved temporal sampling of weather phenomena. This review examines the impact of these radar observations from the past two decades on science research and emerging operational capabilities. Substantial breadth and impact of research is evident for tornado research and forecasting applications, in addition to documentation of other rapidly evolving phenomena associated with deep convection, such as tornadoes, hail, lightning, and tropical cyclones. This review identifies the strengths and weaknesses of how these radars have been used in scientific research to inform future studies, emerging from the increasing availability and capability of rapid-scan radars. In addition, this review synthesizes research that can benefit future operational radar decisions.  more » « less
Award ID(s):
2114817 2113075
PAR ID:
10480009
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
152
Issue:
1
ISSN:
0027-0644
Format(s):
Medium: X Size: p. 3-37
Size(s):
p. 3-37
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Optimizing radar observation strategies is one of the mostimportant considerations in pre-field campaign periods. This is especiallytrue for isolated convective clouds that typically evolve faster than theobservations captured by operational radar networks. This study investigatesuncertainties in radar observations of the evolution of the microphysicaland dynamical properties of isolated deep convective clouds developing inclean and polluted environments. It aims to optimize the radar observationstrategy for deep convection through the use of high-spatiotemporalcloud-resolving model simulations, which resolve the evolution of individualconvective cells every 1 min, coupled with a radar simulator and a celltracking algorithm. The radar simulation settings are based on the TrackingAerosol Convection Interactions ExpeRiment (TRACER) and Experiment of SeaBreeze Convection, Aerosols, Precipitation and Environment (ESCAPE) fieldcampaigns held in the Houston, TX, area but are generalizable to other fieldcampaigns focusing on isolated deep convection. Our analysis produces thefollowing four outcomes. First, a 5–7 m s−1 median difference inmaximum updrafts of tracked cells is shown between the clean and pollutedsimulations in the early stages of the cloud lifetimes. This demonstratesthe importance of obtaining accurate estimates of vertical velocity fromobservations if aerosol impacts are to be properly resolved. Second,tracking of individual cells and using vertical cross section scanning every minute capture the evolution of precipitation particle number concentration and size represented by polarimetric observables better than the operational radar observations that update the volume scan every 5 min. This approach also improves multi-Doppler radar updraft retrievals above 5 km above ground level for regions with updraft velocities greater than 10 m s−1. Third, we propose an optimized strategy composed of cell tracking by quick (1–2 min) vertical cross section scans from more than oneradar in addition to the operational volume scans. We also propose the useof a single-RHI (range height indicator) updraft retrieval technique for cellsclose to the radars, for which multi-Doppler radar retrievals are stillchallenging. Finally, increasing the number of deep convective cells sampledby such observations better represents the median maximum updraft evolutionwith sample sizes of more than 10 deep cells, which decreases the errorassociated with sampling the true population to less than 3 m s−1. 
    more » « less
  2. null (Ed.)
    Abstract Tornadic supercells moved across parts of Oklahoma on the afternoon and evening of 9 May 2016. One such supercell, while producing a long-lived tornado, was observed by nearby WSR-88D radars to contain a strong anticyclonic velocity couplet on the lowest elevation angle. This couplet was located in a very atypical position relative to the ongoing cyclonic tornado and to the supercell’s updraft. A storm survey team identified damage near where this couplet occurred, and, in the absence of evidence refuting otherwise, the damage was thought to have been produced by an anticyclonic tornado. However, such a tornado was not seen in near-ground, high-resolution radar data from a much closer, rapid-scan, mobile radar. Rather, an elongated velocity couplet was observed only at higher elevation angles at altitudes similar to those at which the WSR-88D radars observed the strong couplet. This paper examines observations from two WSR-88D radars and a mobile radar from which it is argued that the anticyclonic couplet (and a similar one ~10 min later) were actually quasi-horizontal vortices centered ~1–1.5 km AGL. The benefits of having data from a radar much closer to the convective storm being sampled (e.g., better spatial resolution and near-ground data coverage) and providing more rapid volume updates are readily apparent. An analysis of these additional radar data provides strong, but not irrefutable, evidence that the anticyclonic tornado that may be inferred from WSR-88D data did not exist; consequently, upon discussions with the National Weather Service, it was not included in Storm Data. 
    more » « less
  3. Abstract This study focuses on the application of phased array radars (PARs) to observe tornadoes and their formation. PAR technology for meteorological applications is maturing and may become a valuable tool for the meteorological community. A fully digital PAR offers a range of benefits including adaptive scanning techniques, higher temporal resolution especially via radar imaging modes, and denser vertical sampling to allow for more complete observations of severe hazard structure and evolution. To best understand the benefits of such a system, synthetic PAR observations are generated from archived mobile rapid-scan observations collected by the Rapid X-band Polarimetric radar (RaXPol) to emulate typical operational radar ranges and PAR-enabled scanning strategy effects. In this study, a synthetic PAR data tool is applied to two tornadic cases (24 May 2011 El Reno, Oklahoma, tornado and the 24 May 2016 Dodge City, Kansas, tornadoes) and one non-tornadic case (17 April 2013). Results indicate that, despite increasing standoff ranges and using vertical imaging, a PAR can still observe a similar mode of tornadogenesis (i.e., non-descending TVS) as traditional mobile systems but with a slight delay in observing intensification at increasing standoff ranges and reduced change in measured intensity. The PAR-enabled vertical imaging mode does not eliminate our ability to identify the TVS at different spoiling factors, but changes to the structure of the TVS may have operational implications. We hope that the improved understanding of meteorological benefits from these synthetic PAR data can provide useful insight for fully digital PAR radar placement and warning operations. 
    more » « less
  4. On 27 May 2015, the Atmospheric Imaging Radar (AIR) collected high-temporal resolution radar observations of an EF-2 tornado near Canadian, Texas. The AIR is a mobile, X-band, imaging radar that uses digital beamforming to collect simultaneous RHI scans while steering mechanically in azimuth to obtain rapid-update weather data. During this deployment, 20°-by-80° (elevation × azimuth) sector volumes were collected every 5.5 s at ranges as close as 6 km. The AIR captured the late-mature and decaying stages of the tornado. Early in the deployment, the tornado had a radius of maximum winds (RMW) of 500 m and exhibited maximum Doppler velocities near 65 m s−1. This study documents the rapid changes associated with the dissipation stages of the tornado. A 10-s resolution time–height investigation of vortex tilt and differential velocity [Formula: see text] is presented and illustrates an instance of upward vortex intensification as well as downward tornado decay. Changes in tornado intensity over periods of less than 30 s coincided with rapid changes in tornado diameter. At least two small-scale vortices were observed being shed from the tornado during a brief weakening period. A persistent layer of vortex tilt was observed near the level of free convection, which separated two layers with contrasting modes of tornado decay. Finally, the vertical cross correlation of vortex intensity reveals that apart from the brief instances of upward vortex intensification and downward decay, tornado intensity was highly correlated throughout the observation period. 
    more » « less
  5. null (Ed.)
    Abstract The Flexible Array of Radars and Mesonets (FARM) Facility is an extensive mobile/quickly-deployable (MQD) multiple-Doppler radar and in-situ instrumentation network. The FARM includes four radars: two 3-cm dual-polarization, dual-frequency (DPDF), Doppler On Wheels DOW6/DOW7, the Rapid-Scan DOW (RSDOW), and a quickly-deployable (QD) DPDF 5-cm COW C-band On Wheels (COW). The FARM includes 3 mobile mesonet (MM) vehicles with 3.5-m masts, an array of rugged QD weather stations (PODNET), QD weather stations deployed on infrastructure such as light/power poles (POLENET), four disdrometers, six MQD upper air sounding systems and a Mobile Operations and Repair Center (MORC). The FARM serves a wide variety of research/educational uses. Components have deployed to >30 projects during 1995-2020 in the USA, Europe, and South America, obtaining pioneering observations of a myriad of small spatial and temporal scale phenomena including tornadoes, hurricanes, lake-effect snow storms, aircraft-affecting turbulence, convection initiation, microbursts, intense precipitation, boundary-layer structures and evolution, airborne hazardous substances, coastal storms, wildfires and wildfire suppression efforts, weather modification effects, and mountain/alpine winds and precipitation. The radars and other FARM systems support innovative educational efforts, deploying >40 times to universities/colleges, providing hands-on access to cutting-edge instrumentation for their students. The FARM provides integrated multiple radar, mesonet, sounding, and related capabilities enabling diverse and robust coordinated sampling of three-dimensional vector winds, precipitation, and thermodynamics increasingly central to a wide range of mesoscale research. Planned innovations include S-band On Wheels NETwork (SOWNET) and Bistatic Adaptable Radar Network (BARN), offering more qualitative improvements to the field project observational paradigm, providing broad, flexible, and inexpensive 10-cm radar coverage and vector windfield measurements. 
    more » « less