skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 31, 2026

Title: An Unobtrusive and Lightweight Ear-worn System for Continuous Epileptic Seizure Detection
Epilepsy is one of the most common neurological diseases globally (around 50M people globally). Fortunately, up to 70% of people with epilepsy could live seizure-free if properly diagnosed and treated, and a reliable technique to monitor the onset of seizures could improve the quality of life of patients who are constantly facing the fear of random seizure attacks. The current gold standard, video-EEG (v-EEG), involves attaching over 20 electrodes to the scalp, is costly, requires hospitalization, trained professionals, and is uncomfortable for patients. To address this gap, we developedEarSD, a lightweight and unobtrusive ear-worn system to detect seizure onsets by measuring physiological signals behind the ears. This system can be integrated into earphones, headphones, or hearing aids, providing a convenient solution for continuous monitoring.EarSDis an integrated custom-builtsensing-computing-communicationear-worn platform to capture seizure signals, remove the noises caused by motion artifacts and environmental impacts, and stream the collected data wirelessly to the computer/mobile phone nearby.EarSD’s ML algorithm, running on a server, identifies seizure-associated signatures and detects onset events. We evaluated the proposed system in both in-lab and in-hospital experiments at the University of Texas Southwestern Medical Center with epileptic seizure patients, confirming its usability and practicality.  more » « less
Award ID(s):
2403528
PAR ID:
10621264
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Computing for Healthcare
Volume:
6
Issue:
1
ISSN:
2637-8051
Page Range / eLocation ID:
1 to 31
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Epilepsy is one of the most common neurological diseases globally, affecting around 50 million people worldwide. Fortunately, up to 70 percent of people with epilepsy could live seizure-free if properly diagnosed and treated, and a reliable technique to monitor the onset of seizures could improve the quality of life of patients who are constantly facing the fear of random seizure attacks. The scalp-based EEG test, despite being the gold standard for diagnosing epilepsy, is costly, necessitates hospitalization, demands skilled professionals for operation, and is discomforting for users. In this paper, we propose EarSD, a novel lightweight, unobtrusive, and socially acceptable ear-worn system to detect epileptic seizure onsets by measuring the physiological signals from behind the user's ears. EarSD includes an integrated custom-built sensing, computing, and communication PCB to collect and amplify the signals of interest, remove the noises caused by motion artifacts and environmental impacts, and stream the data wirelessly to the computer or mobile phone nearby, where data are uploaded to the host computer for further processing. We conducted both in-lab and in-hospital experiments with epileptic seizure patients who were hospitalized for seizure studies. The preliminary results confirm that EarSD can detect seizures with up to 95.3 percent accuracy by just using classical machine learning algorithms. 
    more » « less
  2. Abstract ObjectiveSeizure unpredictability can be debilitating and dangerous for people with epilepsy. Accurate seizure forecasters could improve quality of life for those with epilepsy but must be practical for long‐term use. This study presents the first validation of a seizure‐forecasting system using ultra‐long‐term, non‐invasive wearable data. MethodsEleven participants with epilepsy were recruited for continuous monitoring, capturing heart rate and step count via wrist‐worn devices and seizures via electroencephalography (average recording duration of 337 days). Two hybrid models—combining machine learning and cycle‐based methods—were proposed to forecast seizures at both short (minutes) and long (up to 44 days) horizons. ResultsThe Seizure Warning System (SWS), designed for forecasting near‐term seizures, and the Seizure Risk System (SRS), designed for forecasting long‐term risk, both outperformed traditional models. In addition, the SRS reduced high‐risk time by 29% while increasing sensitivity by 11%. SignificanceThese improvements mark a significant advancement in making seizure forecasting more practical and effective. 
    more » « less
  3. Bernhardt, Boris C (Ed.)
    We propose a novel neural network architecture, SZTrack, to detect and track the spatio-temporal propagation of seizure activity in multichannel EEG. SZTrack combines a convolutional neural network encoder operating on individual EEG channels with recurrent neural networks to capture the evolution of seizure activity. Our unique training strategy aggregates individual electrode level predictions for patient-level seizure detection and localization. We evaluate SZTrack on a clinical EEG dataset of 201 seizure recordings from 34 epilepsy patients acquired at the Johns Hopkins Hospital. Our network achieves similar seizure detection performance to state-of-the-art methods and provides valuable localization information that has not previously been demonstrated in the literature. We also show the cross-site generalization capabilities of SZTrack on a dataset of 53 seizure recordings from 14 epilepsy patients acquired at the University of Wisconsin Madison. SZTrack is able to determine the lobe and hemisphere of origin in nearly all of these new patients without retraining the network . To our knowledge, SZTrack is the first end-to-end seizure tracking network using scalp EEG. 
    more » « less
  4. Abstract Wearable recordings of neurophysiological signals captured from the wrist offer enormous potential for seizure monitoring. Yet, data quality remains one of the most challenging factors that impact data reliability. We suggest a combined data quality assessment tool for the evaluation of multimodal wearable data. We analyzed data from patients with epilepsy from four epilepsy centers. Patients wore wristbands recording accelerometry, electrodermal activity, blood volume pulse, and skin temperature. We calculated data completeness and assessed the time the device was worn (on-body), and modality-specific signal quality scores. We included 37,166 h from 632 patients in the inpatient and 90,776 h from 39 patients in the outpatient setting. All modalities were affected by artifacts. Data loss was higher when using data streaming (up to 49% among inpatient cohorts, averaged across respective recordings) as compared to onboard device recording and storage (up to 9%). On-body scores, estimating the percentage of time a device was worn on the body, were consistently high across cohorts (more than 80%). Signal quality of some modalities, based on established indices, was higher at night than during the day. A uniformly reported data quality and multimodal signal quality index is feasible, makes study results more comparable, and contributes to the development of devices and evaluation routines necessary for seizure monitoring. 
    more » « less
  5. Abstract ObjectiveAnterior temporal lobectomy (ATL) is a widely performed and successful intervention for drug‐resistant temporal lobe epilepsy (TLE). However, up to one third of patients experience seizure recurrence within 1 year after ATL. Despite the extensive literature on presurgical electroencephalography (EEG) and magnetic resonance imaging (MRI) abnormalities to prognosticate seizure freedom following ATL, the value of quantitative analysis of visually reviewed normal interictal EEG in such prognostication remains unclear. In this retrospective multicenter study, we investigate whether machine learning analysis of normal interictal scalp EEG studies can inform the prediction of postoperative seizure freedom outcomes in patients who have undergone ATL. MethodsWe analyzed normal presurgical scalp EEG recordings from 41 Mayo Clinic (MC) and 23 Cleveland Clinic (CC) patients. We used an unbiased automated algorithm to extract eyes closed awake epochs from scalp EEG studies that were free of any epileptiform activity and then extracted spectral EEG features representing (a) spectral power and (b) interhemispheric spectral coherence in frequencies between 1 and 25 Hz across several brain regions. We analyzed the differences between the seizure‐free and non–seizure‐free patients and employed a Naïve Bayes classifier using multiple spectral features to predict surgery outcomes. We trained the classifier using a leave‐one‐patient‐out cross‐validation scheme within the MC data set and then tested using the out‐of‐sample CC data set. Finally, we compared the predictive performance of normal scalp EEG‐derived features against MRI abnormalities. ResultsWe found that several spectral power and coherence features showed significant differences correlated with surgical outcomes and that they were most pronounced in the 10–25 Hz range. The Naïve Bayes classification based on those features predicted 1‐year seizure freedom following ATL with area under the curve (AUC) values of 0.78 and 0.76 for the MC and CC data sets, respectively. Subsequent analyses revealed that (a) interhemispheric spectral coherence features in the 10–25 Hz range provided better predictability than other combinations and (b) normal scalp EEG‐derived features provided superior and potentially distinct predictive value when compared with MRI abnormalities (>10% higher F1 score). SignificanceThese results support that quantitative analysis of even a normal presurgical scalp EEG may help prognosticate seizure freedom following ATL in patients with drug‐resistant TLE. Although the mechanism for this result is not known, the scalp EEG spectral and coherence properties predicting seizure freedom may represent activity arising from the neocortex or the networks responsible for temporal lobe seizure generation within vs outside the margins of an ATL. 
    more » « less