skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cross-laminated strand veneer lumber mass timber panels from thermally modified strands
Thin-strand composite panels and subsequent mass timber beams were produced using thermally modified wood strands in a pressurized system. The effects of thermal modification (TM) temperature and dwell time on the mechanical, moisture, and decay performance of panels were studied. TM reduced moisture sorption and increased decay resistance. The thin-strand composites were evaluated in flexure and benchmarked against commercially available structural products. Moreover, the mass timber beams’ out-of-plane bending was accurately predicted with traditionally used laminated beam theory. The study shows that TM, under controlled conditions, enables the production of high-performing wood-strand panels with improved dimensional stability and decay resistance.  more » « less
Award ID(s):
1827434
PAR ID:
10480321
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Construction and Building Materials
Volume:
368
Issue:
C
ISSN:
0950-0618
Page Range / eLocation ID:
130370
Subject(s) / Keyword(s):
Wood-strands Mechanical properties Physical properties Laminate mechanics Thermal modification
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hunt, Christopher; Jakes, Joseph; Grigsby, Warren; Konnerth, Johannes; Herwijnen, Erik van; Yan, Ning (Ed.)
    Mass timber construction is rapidly growing in North America, given its versatility and performance. In addition, wood has a high strength to weight ratio and low environmental impact in contrast with other construction materials. Nevertheless, durability is a significant concern that needs to be addressed for the advancement of mass timber construction. Extreme care is required to protect members from exposure to high moisture environments while ensuring long-term durability. This project thus focuses on improvements of wood's longevity by combating two main issues: dimensional stability and decay resistance to biological organisms. At the same time, a sustainable approach is considered while utilizing small-diameter logs, which optimizes forest industry products. This is all achieved with the fabrication of Cross Laminated Strand-Veneer-Lumber (CLSVL) out of thermally modified wood strands. State-of-the-art concepts and technologies are implemented in the treatment process, fabrication, and assessment of the material. At first, wood strands are treated at different temperatures to understand its implications. A look at wettability, water sorption, and wood structure is used for this analysis. Furthermore, a series of macro-level mechanical benchmark tests in thin plies are conducted, such as internal bonding, bending, and tension. Later, accelerated decay tests are done to assess the improvement of wood's resistance to rot fungi. Finally, these analyses are used to systematically optimize the thermal treatment to obtain the best performing material to be used in the fabrication of mass timber as CLSVL. 
    more » « less
  2. The feasibility of using β-cyclodextrin (βCD) as an eco-friendly carrier of boric acid for the protection of strand-based wood composites against decay fungi was evaluated. The formation of a βCD–boric acid (βCD–B) complex was confirmed by the appearance of the boron–oxygen bond by using attenuated total reflection–Fourier transform infrared spectroscopy. Chemical shifts of around 6.25 and 1.41 ppm were also observed in 1H Nuclear Magnetic Resonance (NMR) and 11B NMR spectra, respectively. The βCD–B preservatives at two levels (5 and 10 wt.%) were uniformly blended with southern pine strands that were subsequently sprayed with polymeric methylene diphenyl diisocyanate (pMDI) resin. The blended strands were formed into a loose mat by hand and consolidated into 25 × 254 × 12 mm oriented strand boards (OSB) using a hot-press. The OSB panels were cut to end-matched internal bonding (IB) strength and fungal decay resistance test specimens. The vertical density profiles (VDPs) of the IB specimens were measured using an X-ray based density profiler and the specimens with statistically similar VDPs were selected for the IB and decay tests. The IB strength of the treated specimens was lower than the control specimens but they were above the required IB strength of heavy-duty load-bearing boards for use in humid conditions, specified in the BS EN 300:2006 standard. The reduced IB of preservative-treated OSB boards could be explained by the destabilized resin upon the addition of the βCD–B complex, as indicated by the differential scanning calorimetry (DSC) results. The resistance of the OSB panels against two brown-rot fungi (i.e., G. trabeum or P. placenta) was evaluated before and after accelerated leaching cycles. The treated OSBs exposed to the fungi showed an average mass loss of lower than 3% before leaching, while the untreated OSBs had 49 and 35% mass losses due to decay by G. trabeum or P. placenta, respectively. However, upon the leaching, the treatment provided protection only against G. trabeum to a certain degree (average mass loss of 15%). The experimental results suggest that protection efficacy against decay fungi after leaching, as well as the adhesion of the OSB strands, can be improved by increasing the amount of pMDI resin. 
    more » « less
  3. Abstract Soil physical and chemical properties play important roles in mass loss during soil–block tests but the relationship between soil properties and the decay caused by brown-rot and white-rot fungi remains unclear. The objective of this study was to investigate the soil effects on the decay resistance of pine (Pinus spp.) and poplar (Liriodendron tulipifera L.) blocks. The properties of soil from nine different sources (six from Idaho, one from Mississippi, one from Wisconsin, and one from Oregon) were characterized for soil texture, sieved bulk density, water-holding capacity, pH, organic matter, and carbon and nitrogen concentrations. The moisture content and mass loss of decayed wood samples after 8 weeks of fungal exposure were measured. At the end of the study, block moisture ranged from 30 to 200 percent and mass loss ranged from 20 to 60 percent. Despite using a range of soils, there were no direct correlations between soil properties and wood-block moisture content or mass loss. Moreover, among all the soil properties examined, no significant effect of a single soil property on wood-block moisture content and mass loss was measured. Instead, the combined effects of soil physical and chemical properties may interact to govern the decay of wood blocks in the laboratory soil–block test. 
    more » « less
  4. A veneer-based engineered wood product known as Mass Ply Panels (MPP) was recently introduced and certified per ANSI-PRG 320. A full-scale three-story mass timber building structure was constructed and tested at Oregon State University to demonstrate the potential of MPP in the design of resilient, structural lateral force-resisting systems. The building structure comprised MPP diaphragms, laminated veneer lumber (LVL) beams and columns, and an MPP rocking wall design. Two opportunistic vibration tests were performed to charac-terize the dynamic properties of the structure. First, an implosion of a stadium within 600 m of the building location was used as the main excitation source, during which bi-directional horizontal acceleration data were collected for approximately 18 seconds. Second, an ambient vibration test was conducted to collect horizontal acceleration data for one hour. In both tests, sixteen accelerometers were used to measure the response of the structure. Modal features were extracted using an output-only method and compared with the estimates from a finite element model. Lessons learned can be used to inform future modeling efforts of a mass timber building to be tested on the Natural Hazards Engineering Research Infrastructure (NHERI) Experimental Facility at the University of California San Diego high-performance outdoor shake table. 
    more » « less
  5. null (Ed.)
    During this study, full-size wood composite sandwich panels, 1.2 m by 2.4 m (4 ft by 8 ft), with a biaxial corrugated core were evaluated as a building construction material. Considering the applications of this new building material, including roof, floor, and wall paneling, sandwich panels with one and two corrugated core(s) were fabricated and experimentally evaluated. Since primary loads applied on these sandwich panels during their service life are live load, snow load, wind, and gravity loads, their bending and compression behavior were investigated. To improve the thermal characteristics, the cavities within the sandwich panels created by the corrugated geometry of the core were filled with a closed-cell foam. The R-values of the sandwich panels were measured to evaluate their energy performance. Comparison of the weight indicated that fabrication of a corrugated panel needs 74% less strands and, as a result, less resin compared to a strand-based composite panel, such as oriented strand board (OSB), of the same size and same density. Bending results revealed that one-layer core sandwich panels with floor applications under a 4.79 kPa (100 psf) bending load are able to meet the smallest deflection limit of L/360 when the span length (L) is 137.16 cm (54 in) or less. The ultimate capacity of two-layered core sandwich panels as a wall member was 94% and 158% higher than the traditional walls with studs under bending and axial compressive loads, respectively. Two-layered core sandwich panels also showed a higher ultimate capacity compared to structural insulated panels (SIP), at 470% and 235% more in bending and axial compression, respectively. Furthermore, normalized R-values, the thermal resistance, of these sandwich panels, even with the presence of thermal bridging due to the core geometry, was about 114% and 109% higher than plywood and oriented strand board, respectively. 
    more » « less