Abstract We propose a novel deep learning framework, named SYMHnet, which employs a graph neural network and a bidirectional long short‐term memory network to cooperatively learn patterns from solar wind and interplanetary magnetic field parameters for short‐term forecasts of the SYM‐H index based on 1‐ and 5‐min resolution data. SYMHnet takes, as input, the time series of the parameters' values provided by NASA's Space Science Data Coordinated Archive and predicts, as output, the SYM‐H index value at time pointt + whours for a given time pointtwherewis 1 or 2. By incorporating Bayesian inference into the learning framework, SYMHnet can quantify both aleatoric (data) uncertainty and epistemic (model) uncertainty when predicting future SYM‐H indices. Experimental results show that SYMHnet works well at quiet time and storm time, for both 1‐ and 5‐min resolution data. The results also show that SYMHnet generally performs better than related machine learning methods. For example, SYMHnet achieves a forecast skill score (FSS) of 0.343 compared to the FSS of 0.074 of a recent gradient boosting machine (GBM) method when predicting SYM‐H indices (1 hr in advance) in a large storm (SYM‐H = −393 nT) using 5‐min resolution data. When predicting the SYM‐H indices (2 hr in advance) in the large storm, SYMHnet achieves an FSS of 0.553 compared to the FSS of 0.087 of the GBM method. In addition, SYMHnet can provide results for both data and model uncertainty quantification, whereas the related methods cannot.
more »
« less
Perturbed Input Ensemble Modeling With the Space Weather Modeling Framework
Abstract To assess the effect of uncertainties in solar wind driving on the predictions from the operational configuration of the Space Weather Modeling Framework, we have developed a nonparametric method for generating multiple possible realizations of the solar wind just upstream of the bow shock, based on observations near the first Lagrangian point. We have applied this method to the solar wind inputs at the upstream boundary of Space Weather Modeling Framework and have simulated the geomagnetic storm of 5 April 2010. We ran a 40‐member ensemble for this event and have used this ensemble to quantify the uncertainty in the predicted Sym‐H index and ground magnetic disturbances due to the uncertainty in the upstream boundary conditions. Both the ensemble mean and the unperturbed simulation tend to underpredict the magnitude of Sym‐H in the quiet interval before the storm and overpredict in the storm itself, consistent with previous work. The ensemble mean is a more accurate predictor of Sym‐H, improving the mean absolute error by nearly 2 nT for this interval and displaying a smaller bias. We also examine the uncertainty in predicted maxima in ground magnetic disturbances. The confidence intervals are typically narrow during periods where the predicted dBH/dtis low. The confidence intervals are often much wider where the median prediction is for enhanced dBH/dt. The ensemble also allows us to identify intervals of activity that cannot be explained by uncertainty in the solar wind driver, driving further model improvements. This work demonstrates the feasibility and importance of ensemble modeling for space weather applications.
more »
« less
- Award ID(s):
- 1663770
- PAR ID:
- 10480335
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Space Weather
- Volume:
- 16
- Issue:
- 9
- ISSN:
- 1542-7390
- Page Range / eLocation ID:
- 1330 to 1347
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The total energy transfer from the solar wind to the magnetosphere is governed by the reconnection rate at the magnetosphere edges as the Z‐component of interplanetary magnetic field (IMFBz) turns southward. The geomagnetic storm on 21–22 January 2005 is considered to be anomalous as the SYM‐H index that signifies the strength of ring current, decreases and had a sustained trough value of −101 nT lasting more than 6 hr under northward IMFBzconditions. In this work, the standard WINDMI model is utilized to estimate the growth and decay of magnetospheric currents by using several solar wind‐magnetosphere coupling functions. However, it is found that the WINDMI model driven by any of these coupling functions is not fully able to explain the decrease of SYM‐H under northward IMFBz. A dense plasma sheet along with signatures of a highly stretched magnetosphere was observed during this storm. The SYM‐H variations during the entire duration of the storm were only reproduced after modifying the WINDMI model to account for the effects of the dense plasma sheet. The limitations of directly driven models relying purely on the solar wind parameters and not accounting for the state of the magnetosphere are highlighted by this work.more » « less
-
Abstract Numerous solar flares and coronal mass ejection‐induced interplanetary shocks associated with solar active region AR12673 caused disturbances to terrestrial high‐frequency (HF, 3–30 MHz) radio communications from 4–14 September 2017. Simultaneously, Hurricanes Irma and Jose caused significant damage to the Caribbean Islands and parts of Florida. The coincidental timing of both the space weather activity and hurricanes was unfortunate, as HF radio was needed for emergency communications. This paper presents the response of HF amateur radio propagation as observed by the Reverse Beacon Network and the Weak Signal Propagation Reporting Network to the space weather events of that period. Distributed data coverage from these dense sources provided a unique mix of global and regional coverage of ionospheric response and recovery that revealed several features of storm time HF propagation dynamics. X‐class flares on 6, 7, and 10 September caused acute radio blackouts during the day in the Caribbean with recovery times of tens of minutes to hours, based on the decay time of the flare. A severe geomagnetic storm withKpmax = 8+ and SYM‐Hmin = −146 nT occurring 7–10 September wiped out ionospheric communications first on 14 MHz and then on 7 MHz starting at ∼1200 UT 8 September. This storm, combined with affects from additional flare and geomagnetic activity, contributed to a significant suppression of effective HF propagation bands both globally and in the Caribbean for a period of 12 to 15 days.more » « less
-
Abstract Understanding and forecasting outer radiation belt electron flux dropouts is one of the top concerns in space physics. By constructing Support Vector Machine (SVM) models to predict storm‐time dropouts for both relativistic and ultra‐relativistic electrons overL = 4.0–6.0, we investigate the nonlinear correlations between various driving factors (model inputs) and dropouts (model output) and rank their relative importance. Only time series of geomagnetic indices and solar wind parameters are adopted as model inputs. A comparison of the performance of the SVM models that uses only one driving factor at a time enables us to identify the most informative parameter and its optimal length of time history. Its accuracy and the ability to correctly predict dropouts identifies the SYM‐H index as the governing factor atL = 4.0–4.5, while solar wind parameters dominate the dropouts at higher L‐shells (L = 6.0). Our SVM model also gives good prediction of dropouts during completely out‐of‐sample storms.more » « less
-
Abstract The activity of the Sun alternates between a solar minimum and a solar maximum, the former corresponding to a period of “quieter” status of the heliosphere. During solar minimum, it is in principle more straightforward to follow eruptive events and solar wind structures from their birth at the Sun throughout their interplanetary journey. In this paper, we report analysis of the origin, evolution, and heliospheric impact of a series of solar transient events that took place during the second half of August 2018, that is, in the midst of the late declining phase of Solar Cycle 24. In particular, we focus on two successive coronal mass ejections (CMEs) and a following high‐speed stream (HSS) on their way toward Earth and Mars. We find that the first CME impacted both planets, whilst the second caused a strong magnetic storm at Earth and went on to miss Mars, which nevertheless experienced space weather effects from the stream interacting region preceding the HSS. Analysis of remote‐sensing and in‐situ data supported by heliospheric modeling suggests that CME–HSS interaction resulted in the second CME rotating and deflecting in interplanetary space, highlighting that accurately reproducing the ambient solar wind is crucial even during “simpler” solar minimum periods. Lastly, we discuss the upstream solar wind conditions and transient structures responsible for driving space weather effects at Earth and Mars.more » « less