skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Title: Local behavior of the Eden model on graphs and tessellations of manifolds
Abstract

The Eden Model in$${\mathbb {R}}^n$$Rnconstructs a blob as follows: initially a single unit hypercube is infected, and each second a hypercube adjacent to the infected ones is selected randomly and infected. Manin, Roldán, and Schweinhart investigated the topology of the Eden model in$${\mathbb {R}}^{n}$$Rnby considering the possible shapes which can appear on the boundary. In particular, they give probabilistic lower bounds on the Betti numbers of the Eden model. In this paper, we prove analogous results for the Eden model on any infinite, vertex-transitive, locally finite graph: with high probability as time goes to infinity, every “possible” subgraph (with mild conditions on what “possible” means) occurs on the boundary of the Eden model at least a number of times proportional to an isoperimetric profile of the graph. Using this, we can extend the results about the topology of the Eden model to non-Euclidean spaces, such as hyperbolicn-space and universal covers of certain Riemannian manifolds.

 
more » « less
NSF-PAR ID:
10480448
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Applied and Computational Topology
ISSN:
2367-1726
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Eden cell growth model is a simple discrete stochastic process which produces a “blob” (aggregation of cells) in $$\mathbb {R}^d$$Rd: start with one cube in the regular grid, and at each time step add a neighboring cube uniformly at random. This process has been used as a model for the growth of aggregations, tumors, and bacterial colonies and the healing of wounds, among other natural processes. Here, we study the topology and local geometry of the resulting structure, establishing asymptotic bounds for Betti numbers. Our main result is that the Betti numbers at timetgrow at a rate between$$t^{(d-1)/d}$$t(d-1)/dand$$P_d(t)$$Pd(t), where$$P_d(t)$$Pd(t)is the size of the site perimeter. Assuming a widely believed conjecture, this establishes the rate of growth of the Betti numbers in every dimension. We also present the results of computational experiments on finer aspects of the geometry and topology, such as persistent homology and the distribution of shapes of holes.

     
    more » « less
  2. Abstract

    Extending computational harmonic analysis tools from the classical setting of regular lattices to the more general setting of graphs and networks is very important, and much research has been done recently. The generalized Haar–Walsh transform (GHWT) developed by Irion and Saito (2014) is a multiscale transform for signals on graphs, which is a generalization of the classical Haar and Walsh–Hadamard transforms. We propose theextendedgeneralized Haar–Walsh transform (eGHWT), which is a generalization of the adapted time–frequency tilings of Thiele and Villemoes (1996). The eGHWT examines not only the efficiency of graph-domain partitions but also that of “sequency-domain” partitionssimultaneously. Consequently, the eGHWT and its associated best-basis selection algorithm for graph signals significantly improve the performance of the previous GHWT with the similar computational cost,$$O(N \log N)$$O(NlogN), whereNis the number of nodes of an input graph. While the GHWT best-basis algorithm seeks the most suitable orthonormal basis for a given task among more than$$(1.5)^N$$(1.5)Npossible orthonormal bases in$$\mathbb {R}^N$$RN, the eGHWT best-basis algorithm can find a better one by searching through more than$$0.618\cdot (1.84)^N$$0.618·(1.84)Npossible orthonormal bases in$$\mathbb {R}^N$$RN. This article describes the details of the eGHWT best-basis algorithm and demonstrates its superiority using several examples including genuine graph signals as well as conventional digital images viewed as graph signals. Furthermore, we also show how the eGHWT can be extended to 2D signals and matrix-form data by viewing them as a tensor product of graphs generated from their columns and rows and demonstrate its effectiveness on applications such as image approximation.

     
    more » « less
  3. Abstract

    It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions.arXiv:2010.09793) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the “flagship degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators$$L_{\beta ,\gamma } =- {\text {div}}D^{d+1+\gamma -n} \nabla $$Lβ,γ=-divDd+1+γ-nassociated to a domain$$\Omega \subset {\mathbb {R}}^n$$ΩRnwith a uniformly rectifiable boundary$$\Gamma $$Γof dimension$$d < n-1$$d<n-1, the now usual distance to the boundary$$D = D_\beta $$D=Dβgiven by$$D_\beta (X)^{-\beta } = \int _{\Gamma } |X-y|^{-d-\beta } d\sigma (y)$$Dβ(X)-β=Γ|X-y|-d-βdσ(y)for$$X \in \Omega $$XΩ, where$$\beta >0$$β>0and$$\gamma \in (-1,1)$$γ(-1,1). In this paper we show that the Green functionGfor$$L_{\beta ,\gamma }$$Lβ,γ, with pole at infinity, is well approximated by multiples of$$D^{1-\gamma }$$D1-γ, in the sense that the function$$\big | D\nabla \big (\ln \big ( \frac{G}{D^{1-\gamma }} \big )\big )\big |^2$$|D(ln(GD1-γ))|2satisfies a Carleson measure estimate on$$\Omega $$Ω. We underline that the strong and the weak results are different in nature and, of course, at the level of the proofs: the latter extensively used compactness arguments, while the present paper relies on some intricate integration by parts and the properties of the “magical distance function from David et al. (Duke Math J, to appear).

     
    more » « less
  4. Abstract

    In a Merlin–Arthur proof system, the proof verifier (Arthur) accepts valid proofs (from Merlin) with probability 1, and rejects invalid proofs with probability arbitrarily close to 1. The running time of such a system is defined to be the length of Merlin’s proof plus the running time of Arthur. We provide new Merlin–Arthur proof systems for some key problems in fine-grained complexity. In several cases our proof systems have optimal running time. Our main results include:

    Certifying that a list ofnintegers has no 3-SUM solution can be done in Merlin–Arthur time$$\tilde{O}(n)$$O~(n). Previously, Carmosino et al. [ITCS 2016] showed that the problem has a nondeterministic algorithm running in$$\tilde{O}(n^{1.5})$$O~(n1.5)time (that is, there is a proof system with proofs of length$$\tilde{O}(n^{1.5})$$O~(n1.5)and a deterministic verifier running in$$\tilde{O}(n^{1.5})$$O~(n1.5)time).

    Counting the number ofk-cliques with total edge weight equal to zero in ann-node graph can be done in Merlin–Arthur time$${\tilde{O}}(n^{\lceil k/2\rceil })$$O~(nk/2)(where$$k\ge 3$$k3). For oddk, this bound can be further improved for sparse graphs: for example, counting the number of zero-weight triangles in anm-edge graph can be done in Merlin–Arthur time$${\tilde{O}}(m)$$O~(m). Previous Merlin–Arthur protocols by Williams [CCC’16] and Björklund and Kaski [PODC’16] could only countk-cliques in unweighted graphs, and had worse running times for smallk.

    Computing the All-Pairs Shortest Distances matrix for ann-node graph can be done in Merlin–Arthur time$$\tilde{O}(n^2)$$O~(n2). Note this is optimal, as the matrix can have$$\Omega (n^2)$$Ω(n2)nonzero entries in general. Previously, Carmosino et al. [ITCS 2016] showed that this problem has an$$\tilde{O}(n^{2.94})$$O~(n2.94)nondeterministic time algorithm.

    Certifying that ann-variablek-CNF is unsatisfiable can be done in Merlin–Arthur time$$2^{n/2 - n/O(k)}$$2n/2-n/O(k). We also observe an algebrization barrier for the previous$$2^{n/2}\cdot \textrm{poly}(n)$$2n/2·poly(n)-time Merlin–Arthur protocol of R. Williams [CCC’16] for$$\#$$#SAT: in particular, his protocol algebrizes, and we observe there is no algebrizing protocol fork-UNSAT running in$$2^{n/2}/n^{\omega (1)}$$2n/2/nω(1)time. Therefore we have to exploit non-algebrizing properties to obtain our new protocol.

    Certifying a Quantified Boolean Formula is true can be done in Merlin–Arthur time$$2^{4n/5}\cdot \textrm{poly}(n)$$24n/5·poly(n). Previously, the only nontrivial result known along these lines was an Arthur–Merlin–Arthur protocol (where Merlin’s proof depends on some of Arthur’s coins) running in$$2^{2n/3}\cdot \textrm{poly}(n)$$22n/3·poly(n)time.

    Due to the centrality of these problems in fine-grained complexity, our results have consequences for many other problems of interest. For example, our work implies that certifying there is no Subset Sum solution tonintegers can be done in Merlin–Arthur time$$2^{n/3}\cdot \textrm{poly}(n)$$2n/3·poly(n), improving on the previous best protocol by Nederlof [IPL 2017] which took$$2^{0.49991n}\cdot \textrm{poly}(n)$$20.49991n·poly(n)time.

     
    more » « less
  5. Abstract

    In the (special) smoothing spline problem one considers a variational problem with a quadratic data fidelity penalty and Laplacian regularization. Higher order regularity can be obtained via replacing the Laplacian regulariser with a poly-Laplacian regulariser. The methodology is readily adapted to graphs and here we consider graph poly-Laplacian regularization in a fully supervised, non-parametric, noise corrupted, regression problem. In particular, given a dataset$$\{x_i\}_{i=1}^n$${xi}i=1nand a set of noisy labels$$\{y_i\}_{i=1}^n\subset \mathbb {R}$${yi}i=1nRwe let$$u_n{:}\{x_i\}_{i=1}^n\rightarrow \mathbb {R}$$un:{xi}i=1nRbe the minimizer of an energy which consists of a data fidelity term and an appropriately scaled graph poly-Laplacian term. When$$y_i = g(x_i)+\xi _i$$yi=g(xi)+ξi, for iid noise$$\xi _i$$ξi, and using the geometric random graph, we identify (with high probability) the rate of convergence of$$u_n$$untogin the large data limit$$n\rightarrow \infty $$n. Furthermore, our rate is close to the known rate of convergence in the usual smoothing spline model.

     
    more » « less