skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Grass versus trees: A proxy debate for deeper anxieties about competing stream worlds
Stream restoration has become an increasingly important focus in southwestern Wisconsin's Driftless Area, an unglaciated, hilly pocket of the Upper Mississippi River Basin rich in groundwater-driven coldwater streams, recreationally important trout species, and agricultural communities. Climate change is driving a major increase in precipitation and flooding across this rural and often under-resourced region, effects complicated by the ongoing legacies of white settlement and the changes it wrought to area streams, including the burial of floodplains in sediment displaced off area hillslopes. As managers work to consider how to “restore” Driftless streams, riparian vegetation—grass versus trees—has become a central and surprisingly controversial node. Current stream restoration practice typically includes the removal of riparian trees, though that practice has come under increasing criticism. Grounded in more than 5 years of qualitative and biophysical fieldwork in the region, we build from interviews gathered with 18 Driftless Area stream restoration managers from 2018 to 2020 to point to the ways that managers leverage arguments about erosion, flooding, habitat, and angler access, among other things, in service of grass and trees. Indexing the surface flows and underflows of this restoration debate, we introduce the rhetorical concept of the proxy debate to argue that debates about grass versus trees are tethered to competing perspectives on scale, temporality, and dynamism, surficial distractions from much deeper anxieties about what a stream is and should be. We turn to the ways that these distractions serve to further distance the stream restoration enterprise from acknowledging the ongoing human and hydrologic legacies of settler colonialism, and we close by suggesting that careful attention to rhetorical power—both to what arguments say and do, and to what they elide—offers a tentative first step toward restoring lands and relations by questioning what is taken for granted and what lies beneath.  more » « less
Award ID(s):
2009353
PAR ID:
10480454
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Environment and Planning E: Nature and Space
Date Published:
Journal Name:
Environment and Planning E: Nature and Space
ISSN:
2514-8486
Subject(s) / Keyword(s):
Driftless, rhetoric, settler colonialism, stream restoration, Wisconsin
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given the widespread presence of non-native vegetation in urban and Mediterranean watersheds, it is important to evaluate how these sensitive ecosystems will respond to activities to manage and restore native vegetation conditions. This research focuses on Del Cerro, a tributary of the San Diego River in California, where non-native vegetation dominates the riparian zone, creating flooding and fire hazards. Field data were collected in 2018 to 2021 and consisted of water depth, streamflow, and stream temperature. Our data set also captured baseline conditions in the floodplain before and after the removal of burned non-native vegetation in November 2020. Observed changes in hydrologic and geomorphic conditions were used to parameterize and calibrate a two-dimensional hydraulic model to simulate urban floodplain hydraulics after vegetation removal. We utilized the U.S. Army Corps of Engineers’ Hydrologic Engineering Center River Assessment System (HEC-RAS) model to simulate the influence of canopy loss and vegetation disturbance and to assess the impacts of vegetation removal on stream restoration. We simulated streamflow, water depth, and flood extent for two scenarios: (1) 2019; pre-restoration where non-native vegetation dominated the riparian area, and (2) 2021; post-restoration following the removal of non-native vegetation and canopy. Flooding after restoration in 2021 was more frequent compared to 2019. We also observed similar flood extents and peak streamflow for storm events that accumulated half the amount of precipitation as pre-restoration conditions. Our results provide insight into the responses of small urban stream reaches to the removal of invasive vegetation and canopy cover. 
    more » « less
  2. The continually increasing global population residing in urban landscapes impacts numerous ecosystem functions and services provided by urban streams. Urban stream restoration is often employed to offset these impacts and conserve or enhance the various functions and services these streams provide. Despite the assumption that ‘if you build it, [the function] will come’, current understanding of the effects of urban stream restoration on stream ecosystem functions are based on short term studies which may not capture variation in restoration effectiveness over time. We quantified the impact of stream restoration on nutrient and energy dynamics of urban streams by studying 10 urban stream reaches (five restored, five unrestored) in the Baltimore, Maryland, USA, region over a two-year period. We measured gross primary production (GPP) and ecosystem respiration (ER) at the whole-stream scale continuously throughout the study and nitrate (NO3-N) spiraling rates seasonally (spring, summer, autumn) across all reaches. There was no significant restoration effect on NO3-N spiraling across reaches. However, there was a significant canopy cover effect on NO3-N spiraling, and directly comparing paired sets of unrestored-restored reaches showed that restoration does affect NO3-N spiraling after accounting for other environmental variation. Furthermore, there was a change in GPP:ER seasonality, with restored and open-canopied reaches exhibiting higher GPP:ER during summer. The restoration effect, though, appears contingent upon altered canopy cover, which is likely to be a temporary effect of restoration and is a driver of multiple ecosystem services, e.g., habitat, riparian nutrient processing. Our results suggest that decision-making about stream restoration, including evaluations of nutrient benefits, clearly needs to consider spatial and temporal dynamics of canopy cover and tradeoffs among multiple ecosystem services. Here we provide the raw dissolved oxygen, temperature, light, depth, and discharge data used to estimate whole-stream metabolism from 10 sites throughout the greater Baltimore area. These estimates are included in the manuscript “Seeing the light: Urban stream restoration affects stream metabolism and nitrate uptake via changes in canopy cover” by A.J. Reisinger, T.R. Doody, P.M. Groffman, S.S. Kaushal, and Emma J. Rosi, which is currently accepted for publication in Ecological applications. 
    more » « less
  3. The continually increasing global population residing in urban landscapes impacts numerous ecosystem functions and services provided by urban streams. Urban stream restoration is often employed to offset these impacts and conserve or enhance the various functions and services these streams provide. Despite the assumption that ‘if you build it, [the function] will come’, current understanding of the effects of urban stream restoration on stream ecosystem functions are based on short term studies which may not capture variation in restoration effectiveness over time. We quantified the impact of stream restoration on nutrient and energy dynamics of urban streams by studying 10 urban stream reaches (five restored, five unrestored) in the Baltimore, Maryland, USA, region over a two-year period. We measured gross primary production (GPP) and ecosystem respiration (ER) at the whole-stream scale continuously throughout the study and nitrate (NO3-N) spiraling rates seasonally (spring, summer, autumn) across all reaches. There was no significant restoration effect on NO3-N spiraling across reaches. However, there was a significant canopy cover effect on NO3-N spiraling, and directly comparing paired sets of unrestored-restored reaches showed that restoration does affect NO3-N spiraling after accounting for other environmental variation. Furthermore, there was a change in GPP:ER seasonality, with restored and open-canopied reaches exhibiting higher GPP:ER during summer. The restoration effect, though, appears contingent upon altered canopy cover, which is likely to be a temporary effect of restoration and is a driver of multiple ecosystem services, e.g., habitat, riparian nutrient processing. Our results suggest that decision-making about stream restoration, including evaluations of nutrient benefits, clearly needs to consider spatial and temporal dynamics of canopy cover and tradeoffs among multiple ecosystem services. Here we provide site descriptions and nitrate spiraling data from nutrient releases performed at 10 sites throughout the greater Baltimore area. These estimates are included in the manuscript “Seeing the light: Urban stream restoration affects stream metabolism and nitrate uptake via changes in canopy cover” by A.J. Reisinger, T.R. Doody, P.M. Groffman, S.S. Kaushal, and Emma J. Rosi, which is currently accepted for publication in Ecological applications. 
    more » « less
  4. The continually increasing global population residing in urban landscapes impacts numerous ecosystem functions and services provided by urban streams. Urban stream restoration is often employed to offset these impacts and conserve or enhance the various functions and services these streams provide. Despite the assumption that ‘if you build it, [the function] will come’, current understanding of the effects of urban stream restoration on stream ecosystem functions are based on short term studies which may not capture variation in restoration effectiveness over time. We quantified the impact of stream restoration on nutrient and energy dynamics of urban streams by studying 10 urban stream reaches (five restored, five unrestored) in the Baltimore, Maryland, USA, region over a two-year period. We measured gross primary production (GPP) and ecosystem respiration (ER) at the whole-stream scale continuously throughout the study and nitrate (NO3-N) spiraling rates seasonally (spring, summer, autumn) across all reaches. There was no significant restoration effect on NO3-N spiraling across reaches. However, there was a significant canopy cover effect on NO3-N spiraling, and directly comparing paired sets of unrestored-restored reaches showed that restoration does affect NO3-N spiraling after accounting for other environmental variation. Furthermore, there was a change in GPP:ER seasonality, with restored and open-canopied reaches exhibiting higher GPP:ER during summer. The restoration effect, though, appears contingent upon altered canopy cover, which is likely to be a temporary effect of restoration and is a driver of multiple ecosystem services, e.g., habitat, riparian nutrient processing. Our results suggest that decision-making about stream restoration, including evaluations of nutrient benefits, clearly needs to consider spatial and temporal dynamics of canopy cover and tradeoffs among multiple ecosystem services. Here we provide model estimates for GPP, ER, and net ecosystem productivity (NEP) from from 10 sites throughout the greater Baltimore area. These estimates are included in the manuscript “Seeing the light: Urban stream restoration affects stream metabolism and nitrate uptake via changes in canopy cover” by A.J. Reisinger, T.R. Doody, P.M. Groffman, S.S. Kaushal, and Emma J. Rosi, which is currently accepted for publication in Ecological applications. 
    more » « less
  5. Abstract The compounding effects of anthropogenic legacies for environmental pollution are significant, but not well understood. Here, we show that centennial‐scale legacies of milldams and decadal‐scale legacies of road salt salinization interact in unexpected ways to produce hot spots of nitrogen (N) in riparian zones. Riparian groundwater and stream water concentrations upstream of two mid‐Atlantic (Pennsylvania and Delaware) milldams, 2.4 and 4 m tall, were sampled over a 2 year period. Clay and silt‐rich legacy sediments with low hydraulic conductivity, stagnant and poorly mixed hydrologic conditions, and persistent hypoxia in riparian sediments upstream of milldams produced a unique biogeochemical gradient with nitrate removal via denitrification at the upland riparian edge and ammonium‐N accumulation in near‐stream sediments and groundwaters. Riparian groundwater ammonium‐N concentrations upstream of the milldams ranged from 0.006 to 30.6 mgN L−1while soil‐bound values were 0.11–456 mg kg−1. We attribute the elevated ammonium concentrations to ammonification with suppression of nitrification and/or dissimilatory nitrate reduction to ammonium (DNRA). Sodium inputs to riparian groundwater (25–1,504 mg L−1) from road salts may further enhance DNRA and ammonium production and displace sorbed soil ammonium‐N into groundwaters. This study suggests that legacies of milldams and road salts may undercut the N buffering capacity of riparian zones and need to be considered in riparian buffer assessments, watershed management plans, and dam removal decisions. Given the widespread existence of dams and other barriers and the ubiquitous use of road salt, the potential for this synergistic N pollution is significant. 
    more » « less