skip to main content


Title: Linking Water Age, Nitrate Export Regime, and Nitrate Isotope Biogeochemistry in a Tile‐Drained Agricultural Field
Abstract

Accurately quantifying and predicting the reactive transport of nitrate () in hydrologic systems continues to be a challenge, due to the complex hydrological and biogeochemical interactions that underlie this transport. Recent advances related to time‐variant water age have led to a new method that probes water mixing and selection behaviors using StorAge Selection (SAS) functions. In this study, SAS functions were applied to investigate storage, water selection behaviors, and export regimes in a tile‐drained corn‐soybean field. The natural abundance stable nitrogen and oxygen isotopes of tile drainage were also measured to provide constraints on biogeochemical transformations. The SAS functions, calibrated using chloride measurements at tile drain outlets, revealed a strong young water preference during tile discharge generation. The use of a time‐variant SAS function for tile discharge generated unique water age dynamics that reveal an inverse storage effect driven by the activation of preferential flow paths and mechanically explain the observed variations in isotopes. Combining the water age estimates with isotope fingerprinting shed new light on export dynamics at the tile‐drain scale, where a large mixing volume and the lack of a strong vertical contrast in concentration resulted in chemostatic export regimes. For the first time, isotopes were embedded into a water age‐based transport model to model reactive transport under transient conditions. The results of this modeling study provided a proof‐of‐concept for the potential of coupling water age modeling with isotope analysis to elucidate the mechanisms driving reactive transport.

 
more » « less
NSF-PAR ID:
10480482
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
59
Issue:
12
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Spatially integrated transport models have been applied widely to model hydrologic transport. However, we lack simple and process‐based theoretical tools to predict the transport closures—transit time distributions (TTDs) and StorAge Selection (SAS) functions. This limits our ability to infer characteristics of hydrologic systems from tracer observations and to make first‐order estimates of SAS functions in catchments where no tracer data is available. Here we present a theoretical framework linking TTDs and SAS functions to hydraulic groundwater theory at the hillslope scale. For hillslopes where the saturated hydraulic conductivity declines exponentially with depth, analytical solutions for the closures are derived that can be used as hypotheses to test against data. In the simplest form, the hillslope SAS function resembles a uniform or exponential distribution (corresponding to flow pathways in the saturated zone) offset from zero by the storage in the unsaturated zone that does not contribute to discharge. The framework is validated against nine idealized virtual hillslopes constructed using a 2‐D Richards equation‐based model, and against data from tracer experiments in two artificial hillslopes. Modeled internal age, life expectancy, and transit time structures reproduce theoretical predictions. The experimental data also support the theory, though further work is needed to account for the effects of time‐variability. The shape and tailing of TTDs and their power spectra are discussed. The theoretical framework yields several dimensionless numbers that can be used to classify hillslope scale flow and transport dynamics and suggests distinct water age structures for high or low Hillslope number.

     
    more » « less
  2. Abstract. Ecohydrological models are powerful tools to quantify the effects that independent fluxes may have on catchment storage dynamics. Here, we adapted the tracer-aided ecohydrological model, EcH2O-iso, for cold regions with the explicit conceptualization of dynamic soil freeze–thaw processes. We tested the model at the data-rich Krycklan site in northern Sweden with multi-criterion calibration using discharge, stream isotopes and soil moisture in three nested catchments. We utilized the model's incorporation of ecohydrological partitioning to evaluate the effect of soil frost on evaporation and transpiration water ages, and thereby the age of source waters. The simulation of stream discharge, isotopes, and soil moisture variability captured the seasonal dynamics at all three stream sites and both soil sites, with notable reductions in discharge and soil moisture during the winter months due to the development of the frost front. Stream isotope simulations reproduced the response to the isotopically depleted pulse of spring snowmelt. The soil frost dynamics adequately captured the spatial differences in the freezing front throughout the winter period, despite no direct calibration of soil frost to measured soil temperature. The simulated soil frost indicated a maximum freeze depth of 0.25 m below forest vegetation. Water ages of evaporation and transpiration reflect the influence of snowmelt inputs, with a high proclivity of old water (pre-winter storage) at the beginning of the growing season and a mix of snowmelt and precipitation (young water) toward the end of the summer. Soil frost had an early season influence of the transpiration water ages, with water pre-dating the snowpack mainly sustaining vegetation at the start of the growing season. Given the long-term expected change in the energy balance of northern climates, the approach presented provides a framework for quantifying the interactions of ecohydrological fluxes and waters stored in the soil and understanding how these may be impacted in future.

     
    more » « less
  3. Abstract

    Input of organic matter into stream channels is the primary energy source for headwater ecosystems and ultimately carbon to the oceans and hence is an important component of the global carbon cycle. Here, we quantify organic‐rich fine sediment mobilization, transport, and storage in a Strahler fourth‐order stream during individual intermediate‐sized storm events. By combining measurements of fallout radionuclides (FRNs)7Be and210Pb and stable water isotopes with a conceptual model of suspended load trapping by channel margins, we find that the channel bed was consistently a source of suspended load to the channel margins. Relative to storage on the channel margins, suspended load export increased through the spring and summer, perhaps related to the in‐channel decomposition of organic debris as indicated by its FRN exposure age and changing bulk δ13C composition. Trapping of suspended load by riparian margins limits sediment transport distances, which, given sufficient discharge to fully suspend the load, is nearly independent of stream discharge for sub‐bankfull discharges. Limited data indicate that the fractional size of the channel margins where trapping occurs decreases with increasing watershed area. Increasing transport length and decreasing fractional margin area with increasing watershed area results in a systematic downstream decoupling of the channel from local terrestrial organic matter exchange. These findings provide a framework for understanding suspended load dynamics in formerly glaciated regions where sediment production and fluxes are generally low and thus the annual input of organic debris is a major component of suspended load budget.

     
    more » « less
  4. To date, the vast majority of studies seeking to link discharge to solute concentrations have been based on representations of fluid age distributions in watersheds that are time-invariant. As increasingly detailed spatial and temporal datasets become available for weathering-derived riverine solute concentrations, the capacity to link this mass flux to transient routing of reactive fluids through Critical Zone environments is vital to quantitative interpretation. Relationships between fluid age distributions and the stable isotope ratios of these geogenic solutes are even less developed, yet these signatures are vital to parsing the suite of water-rock-life interactions that create concentration-discharge relationships. Here we offer the first merging of a hydrological model featuring time-variant fluid age distributions with a geochemical model for isotopically fractionating weathering reactions. Using SiO2(aq)and the corresponding silicon isotope ratioδ30Si as an example, we show that the stable isotope signatures of riverine solutes produced by weathering reactions reflect a component of the fluid age distribution that is unique to the corresponding solute concentrations. This distinct sensitivity is the result of a stronger link between isotope ratios and the age distribution parameters describing a given watershed. This novel modeling framework is used to provide a quantitative basis for the interpretation of SiO2(aq)andδ30Si in six low-order streams spread across a diversity of climates, geologies, and ecosystems. To our knowledge, this is the first forward and process-based model to describe the isotopic signatures of solutes derived from weathering reactions in watersheds subject to time-varying discharge.

     
    more » « less
  5. Abstract

    Spatially integrated water transport dynamics at the hillslope scale have rarely been observed directly, and underlying physical mechanisms of those dynamics are poorly understood. We present time‐variable transit time distributions and StorAge Selection (SAS) functions for a 28 days tracer experiment conducted at the Landscape Evolution Observatory, Biosphere 2, the University of Arizona, AZ, USA. The observed form of the SAS functions is concave, meaning that older water in the hillslope was preferentially discharged than younger water. The concavity is, in part, explained by the relative importance of advective and diffusive water dynamics and by the geomorphologic structure of the hillslopes. A simple numerical examination illustrates that, for straight plan‐shaped hillslopes, the saturated zone SAS function is concave when the hillslope Péclet (Pe) number is large (and thus when the advective water dynamics are more pronounced). We also investigated the effect of hillslope planform geometry on the saturated zone SAS function using a model and found that the more convergent the plan shape is, the more concave the SAS function is. A numerical examination indicates that the unsaturated zone SAS function is concave for straight and convergent hillslopes when the soil thickness is uniform. The concavity of those subcomponent SAS functions signifies that the hillslope scale SAS function is concave for straight or convergent plan shape hillslopes when the hillslope Pe number is high.

     
    more » « less