skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unveiling genetic variant-level biomarkers for aggressive prostate cancer
Prostate cancer (PCa) represents the second most frequently diagnosed malignancy among males in the United States and ranks fourth in terms of general cancer prevalence on a global scale. A critical assessment of existing literature indicates a notable deficiency in the identification of biomarkers that are uniquely associated with aggressive forms of PCa. The principal objective of this paper is to discover biomarkers at the genetic variant level by deploying statistical methodologies to determine associations between such variants and the aggressive and lethal form of the disease. Employing the multiple comparisons technique, we identified four variants that were statistically significant at the 5 % significance level. Furthermore, we utilized Over-representation analysis (ORA) to identify the biological pathways linked with these genetic variants. To validate our findings, we employed a decision tree algorithm on an independent dataset comparing the proposed biomarkers with random subsets of variants. Results have shown that the predictive accuracy of aggressive samples was 97 % for the proposed biomarkers, while this figure dropped to 67 % when randomly selected variants were considered.  more » « less
Award ID(s):
1948338
PAR ID:
10480556
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Informatics in Medicine Unlocked
Volume:
43
Issue:
C
ISSN:
2352-9148
Page Range / eLocation ID:
101410
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background: Smoking has not been an established risk factor for prostate cancer (PCa), and has not been emphasized in PCa prevention. However, recent studies have shown increasing evidence that there is a higher risk of biochemical recurrence, PCa mortality, and metastasis among current smokers, presenting an urgent need in re-evaluating the association between smoking and aggressive PCa. This study aimed to determine whether smoking increase the likelihood of developing a more aggressive prostate cancer. Methods: Equal numbers of African Americans (AAs) and European Americans (EAs) by smoking status (never/former/current) matched with PCa aggressiveness, BMI, 5-year age group, and year of baseline recruitment, totaling 480 participants, were included in the metabolomics study. For metabolomics analysis, fold change and BH-adjusted p-value from t-test adjusted for age for univariate analysis, and PCA adjusted for age and PLS-DA supervised statistical analysis for multivariate analysis were employed to decipher the underlying metabolomic patterns, and identify significantly dysregulated metabolites for the variables of interest. Results: AA participants were significantly younger (mean=61.4, SD=7.7) compared with EAs (mean=63.5, SD=7.5). Current smokers had a 2.4 times higher risk of high aggressive PCa. When stratified by race, the risk diminished for EAs but increased for AAs. Global metabolic profiles detected a total of 1,487 compounds of known identity. After excluding metabolites with missing values in more than 20% of the samples and with small standard variation, we observed a distinct cluster of participants from AA aggressive PCa patients and current smokers that were separated from EAs and never smokers. With BH-adjusted p-value < 0.05 and fold change > 2, we identified 10 significantly dysregulated metabolites between AA and EA among high aggressive PCa and current smokers. Further, 36 metabolites between current and never smokers among AA high aggressive PCa were significantly dysregulated, but none of them are annotated as tobacco metabolites. Conclusion: Our study presented distinctive metabolomics profiles specific to AA current smokers who had high aggressive PCa. Furthermore, the distinctive patterns were not driven by the tobacco metabolites, with the potential to identify metabolites that might help to understand the relationships between smoking and aggressive PCa in AA. Citation Format: Se-Ran Jun, L. Joseph Su, Eryn Matich, Ping-Ching Hsu. Distinctive metabolomics profiles associated with African American current smokers who have high aggressive prostate cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3680. 
    more » « less
  2. We have identified 38 specifically excised, differentially expressed snoRNA fragments (sdRNAs) in TCGA prostate cancer (PCa) patient samples as compared to normal prostate controls. SnoRNA-derived fragments sdRNA-D19b and -A24 emerged among the most differentially expressed and were selected for further experimentation. We found that the overexpression of either sdRNA significantly increased PC3 (a well-established model of castration-resistant prostate cancer (CRPC)) cell proliferation, and that sdRNA-D19b overexpression also markedly increased the rate of PC3 cell migration. In addition, both sdRNAs provided drug-specific resistances with sdRNA-D19b levels correlating with paclitaxel resistance and sdRNA-24A conferring dasatinib resistance. In silico and in vitro analyses revealed that two established PCa tumor suppressor genes, CD44 and CDK12, represent targets for sdRNA-D19b and sdRNA-A24, respectively. This outlines a biologically coherent mechanism by which sdRNAs downregulate tumor suppressors in AR-PCa to enhance proliferative and metastatic capabilities and to encourage chemotherapeutic resistance. Aggressive proliferation, rampant metastasis, and recalcitrance to chemotherapy are core characteristics of CRPC that synergize to produce a pathology that ranks second in cancer-related deaths for men. This study defines sdRNA-D19b and -A24 as contributors to AR-PCa, potentially providing novel biomarkers and therapeutic targets of use in PCa clinical intervention. 
    more » « less
  3. During epithelial-to-mesenchymal transition (EMT), cancer cells lose their cell–cell adhesion junctions as they become more metastatic, altering cell motility and focal adhesion disassembly associated with increased detachment from the primary tumor and a migratory response into nearby tissue and vasculature. Current in vitro strategies characterizing a cell's metastatic potential heavily favor quantifying the presence of cell adhesion biomarkers through biochemical analysis; however, mechanical cues such as adhesion and motility directly relate to cell metastatic potential without needing to first identify a cell specific biomarker for a particular type of cancer. This paper presents a comprehensive comparison of two functional metrics of cancer aggression, wound closure migration velocity and cell detachment from a culture surface, for three pairs of epithelial cancer cell lines (breast, endometrium, tongue tissue origins). It was found that one functional metric alone was not sufficient to categorize the cancer cell lines; instead, both metrics were necessary to identify functional trends and accurately place cells on the spectrum of metastasis. On average, cell lines with low metastatic potential (MCF-7, Ishikawa, and Cal-27) were more aggressive through wound closure migration compared to loss of cell adhesion. On the other hand, cell lines with high metastatic potential (MDA-MB-231, KLE, and SCC-25) were on average more aggressive through loss of cell adhesion compared to wound closure migration. This trend was true independent of the tissue type where the cells originated, indicating that there is a relationship between metastatic potential and the predominate type of cancer aggression. Our work presents one of the first combined studies relating cell metastatic potential to functional migration and adhesion metrics across cancer cell lines from selected tissue origins, without needing to identify tissue-specific biomarkers to achieve success. Using functional metrics provides powerful clinical relevancy for future predictive tools of cancer metastasis. 
    more » « less
  4. Similar molecular and genetic aberrations among diseases can lead to the discovery of jointly important treatment options across biologically similar diseases. Oncologists closely looked at several hormone-dependent cancers and identified remarkable pathological and molecular similarities in their DNA repair pathway abnormalities. Although deficiencies in Homologous Recombination (HR) pathway plays a significant role towards cancer progression, there could be other DNA-repair pathway deficiencies that requires careful investigation. In this paper, through a biomarker-driven drug repurposing model, we identified several potential drug candidates for breast and prostate cancer patients with DNA-repair deficiencies based on common specific biomarkers and irrespective of the organ the tumors originated from. Normalized discounted cumulative gain (NDCG) and sensitivity analysis were used to assess the performance of the drug repurposing model. Our results showed that Mitoxantrone and Genistein were among drugs with high therapeutic effects that significantly reverted the gene expression changes caused by the disease (FDR adjusted p-values for prostate cancer =1.225e-4 and 8.195e-8, respectively) for patients with deficiencies in their homologous recombination (HR) pathways. The proposed multi-cancer treatment framework, suitable for patients whose cancers had common specific biomarkers, has the potential to identify promising drug candidates by enriching the study population through the integration of multiple cancers and targeting patients who respond poorly to organ-specific treatments. 
    more » « less
  5. Saleem, M. (Ed.)
    NKX3.1’s downregulation is strongly associated with prostate cancer (PCa) initiation, progression, and CRPC development. Nevertheless, a clear disagreement exists between NKX3.1 protein and mRNA levels in PCa tissues, indicating that its regulation at a post-translational level plays a vital role. This study identified a strong negative relationship between NKX3.1 and LIMK2, which is critical in CRPC pathogenesis. We identified that NKX3.1 degradation by direct phosphorylation by LIMK2 is crucial for promoting oncogenicity in CRPC cells and in vivo. LIMK2 also downregulates NKX3.1 mRNA levels. In return, NKX3.1 promotes LIMK2’s ubiquitylation. Thus, the negative crosstalk between LIMK2-NKX3.1 regulates AR, ARv7, and AKT signaling, promoting aggressive phenotypes. We also provide a new link between NKX3.1 and PTEN, both of which are downregulated by LIMK2. PTEN loss is strongly linked with NKX3.1 downregulation. As NKX3.1 is a prostate-specific tumor suppressor, preserving its levels by LIMK2 inhibition provides a tremendous opportunity for developing targeted therapy in CRPC. Further, as NKX3.1 downregulates AR transcription and inhibits AKT signaling, restoring its levels by inhibiting LIMK2 is expected to be especially beneficial by co-targeting two driver pathways in tandem, a highly desirable requisite for developing effective PCa therapeutics. 
    more » « less