This paper presents the experimental position and force testing of a 3-armed 6-DOF Parallel Robot, Robossis, that is specifically designed for the application of long-bone femur fracture surgery. Current surgical techniques require a significant amount of time and effort to restore the fractured femur fragments’ length, alignment and rotation. To address these issues, the Robossis system will facilitate the femur fracture surgical procedure and oppose the large traction forces/torques of the muscle groups surrounding the femur. As such, Robossis would subsequently improve patient outcomes by eliminating intraoperative injuries, reducing radiation exposure from X-rays during surgery and decreasing the likelihood of follow-up operations. Specifically, in this paper, we study the accuracy of the Robossis system while moving in the operational workspace under free and simulated traction loads of ([Formula: see text]–1100[Formula: see text]N). Experimental testing in this study demonstrates that Robossis can reach the most extreme points in the workspace, as defined by the theoretical workspace, while maintaining minimal deviation from those points with an average deviation of 0.324[Formula: see text]mm. Furthermore, the force testing experiment shows that Robossis can counteract loads that are clinically relevant to restoring the fractured femur fragments’ length, alignment and rotation. In addition, we study the accuracy of Robossis motion while coupled with the master controller Sigma 7. The results show that Robossis can follow the desired trajectory in real-time with an average error of less than 1[Formula: see text]mm. To conclude, these results further establish the ability of the Robossis system to facilitate the femur fracture surgical procedure and eliminate limitations faced with the current surgical techniques.
more »
« less
Analysis and Optimization of a 6-DoF 3-RRPS Parallel Mechanism for Robot-Assisted Long-Bone Fracture Surgery
Robot-assisted femur repair has been of increased interest in recent literature due to the success of robot-assisted surgeries and current reoperation rates for femur fracture surgeries. The current limitation of robot-assisted femur fracture surgery is the lack of large force generation and sufficient workspace size in traditional mechanisms. To address these challenges, our group has created a 3-RRPS parallel mechanism, Robossis, which maintains the strength of parallel mechanisms while improving the translational and rotational workspace volume. In this paper, an optimal design methodology of parallel mechanisms for application to robot-assisted femur fracture surgery using a single-objective genetic algorithm is proposed. The genetic algorithm will use a single-objective function to evaluate the various configurations based on the clinical and mechanical design criteria for femur fracture surgery as well as the global conditioning index. The objective function is composed of the desired translational and rotational workspaces based on the design criteria, dynamic load-carrying capacity, and the homogeneous Jacobian global conditioning index. Lastly, experimental results of Robossis were obtained to validate the kinematic solution and the mechanism itself; Robossis had an average error of 0.31 mm during experimental force testing.
more »
« less
- PAR ID:
- 10480674
- Publisher / Repository:
- ASME
- Date Published:
- Journal Name:
- Journal of Mechanisms and Robotics
- Volume:
- 16
- Issue:
- 6
- ISSN:
- 1942-4302
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract An extensible continuum manipulator (ECM) has specific advantages over its non-extensible counterparts. For instance, in certain applications, such as minimally invasive surgery or tube inspection, the base motion might be limited or disallowed. The additional extensibility provides the robot with more dexterous manipulation and larger workspace. Existing continuum robot designs achieve extensibility mainly through artificial muscle/pneumatic, extensible backbone, concentric tube, and base extension etc. This paper proposes a new way to achieve this additional motion degree of freedom by taking advantage of the rigid coupling hybrid mechanism concept and a flexible parallel mechanism. More specifically, a rack and pinion set is used to transmit the motion of the i-th subsegment to drive the (i+1)-th subsegment. A six-chain flexible parallel mechanism is used to generate the desired spatial bending and one extension mobility for each subsegment. This way, the new manipulator is able to achieve tail-like spatial bending and worm-like extension at the same time. A proof-of-concept prototype was integrated to verify the mobility of the new mechanism. Corresponding kinematic analyses are conducted to estimate the workspace and the motion non-uniformity.more » « less
-
null (Ed.)Robot-assisted minimally invasive surgery com- bines the skills and techniques of highly-trained surgeons with the robustness and precision of machines. Several advantages include precision beyond human dexterity alone, greater kinematic degrees of freedom at the surgical tool tip, and possibilities in remote surgical practices through teleoperation. Nevertheless, obtaining accurate force feedback during surgical operations remains a challenging hurdle. Though direct force sensing using tool tip mounted sensors is theoretically possible, it is not amenable to required sterilization procedures. Vision-based force estimation according to real-time analysis of tissue deformation serves as a promising alternative. In this application, along with numerous related research in robot- assisted minimally invasive surgery, segmentation of surgical instruments in endoscopic images is a prerequisite. Thus, a surgical tool segmentation algorithm robust to partial occlusion is proposed using DFT shape matching of robot kinematics shape prior (u) fused with log likelihood mask (Q) in the Opponent color space to generate final mask (U). Implemented on the Raven II surgical robot system, a real-time performance robust to tool tip orientation and up to 6 fps without GPU acceleration is achieved.more » « less
-
null (Ed.)Over the past decade, Robot-Assisted Surgeries (RAS), have become more prevalent in facilitating successful operations. Of the various types of RAS, the domain of collaborative surgery has gained traction in medical research. Prominent examples include providing haptic feedback to sense tissue consistency, and automating sub-tasks during surgery such as cutting or needle hand-off - pulling and reorienting the needle after insertion during suturing. By fragmenting suturing into automated and manual tasks the surgeon could essentially control the process with one hand and also circumvent workspace restrictions imposed by the control interface present at the surgeon's side during the operation. This paper presents an exploration of a discrete reinforcement learning-based approach to automate the needle hand-off task. Users were asked to perform a simple running suture using the da Vinci Research Kit. The user trajectory was learnt by generating a sparse reward function and deriving an optimal policy using Q-learning. Trajectories obtained from three learnt policies were compared to the user defined trajectory. The results showed a root-mean-square error of [0.0044mm, 0.0027mm, 0.0020mm] in ℝ 3 . Additional trajectories from varying initial positions were produced from a single policy to simulate repeated passes of the hand-off task.more » « less
-
null (Ed.)Abstract An extensible continuum manipulator (ECM) has specific advantages over its nonextensible counterparts. For instance, in certain applications, such as minimally invasive surgery or pipe inspection, the base motion might be limited or disallowed. The additional extensibility provides the robot with more dexterous manipulation and a larger workspace. Existing continuum robot designs achieve extensibility mainly through artificial muscle/pneumatic, extensible backbone, concentric tube, and base extension, etc. This article proposes a new way to achieve this additional motion degree-of-freedom by taking advantage of the rigid coupling hybrid mechanism concept and a flexible parallel mechanism. More specifically, a rack and pinion set is used to transmit the motion of the i-th subsegment to drive the (i+1)-th subsegment. A six-chain flexible parallel mechanism is used to generate the desired spatial bending and one extension mobility for each subsegment. This way, the new manipulator can achieve tail-like spatial bending and worm-like extension at the same time. Simplified kinematic analyses are conducted to estimate the workspace and the motion nonuniformity. A proof-of-concept prototype was integrated to verify the mechanism’s mobility and to evaluate the kinematic model accuracy. The results show that the proposed mechanism achieved the desired mobilities with a maximum extension ratio of 32.2% and a maximum bending angle of 80 deg.more » « less
An official website of the United States government

