Robot-assisted femur repair has been of increased interest in recent literature due to the success of robot-assisted surgeries and current reoperation rates for femur fracture surgeries. The current limitation of robot-assisted femur fracture surgery is the lack of large force generation and sufficient workspace size in traditional mechanisms. To address these challenges, our group has created a 3-RRPS parallel mechanism, Robossis, which maintains the strength of parallel mechanisms while improving the translational and rotational workspace volume. In this paper, an optimal design methodology of parallel mechanisms for application to robot-assisted femur fracture surgery using a single-objective genetic algorithm is proposed. The genetic algorithm will use a single-objective function to evaluate the various configurations based on the clinical and mechanical design criteria for femur fracture surgery as well as the global conditioning index. The objective function is composed of the desired translational and rotational workspaces based on the design criteria, dynamic load-carrying capacity, and the homogeneous Jacobian global conditioning index. Lastly, experimental results of Robossis were obtained to validate the kinematic solution and the mechanism itself; Robossis had an average error of 0.31 mm during experimental force testing.
more »
« less
Experimental Evaluation of a 3-Armed 6-DOF Parallel Robot for Femur Fracture Surgery
This paper presents the experimental position and force testing of a 3-armed 6-DOF Parallel Robot, Robossis, that is specifically designed for the application of long-bone femur fracture surgery. Current surgical techniques require a significant amount of time and effort to restore the fractured femur fragments’ length, alignment and rotation. To address these issues, the Robossis system will facilitate the femur fracture surgical procedure and oppose the large traction forces/torques of the muscle groups surrounding the femur. As such, Robossis would subsequently improve patient outcomes by eliminating intraoperative injuries, reducing radiation exposure from X-rays during surgery and decreasing the likelihood of follow-up operations. Specifically, in this paper, we study the accuracy of the Robossis system while moving in the operational workspace under free and simulated traction loads of ([Formula: see text]–1100[Formula: see text]N). Experimental testing in this study demonstrates that Robossis can reach the most extreme points in the workspace, as defined by the theoretical workspace, while maintaining minimal deviation from those points with an average deviation of 0.324[Formula: see text]mm. Furthermore, the force testing experiment shows that Robossis can counteract loads that are clinically relevant to restoring the fractured femur fragments’ length, alignment and rotation. In addition, we study the accuracy of Robossis motion while coupled with the master controller Sigma 7. The results show that Robossis can follow the desired trajectory in real-time with an average error of less than 1[Formula: see text]mm. To conclude, these results further establish the ability of the Robossis system to facilitate the femur fracture surgical procedure and eliminate limitations faced with the current surgical techniques.
more »
« less
- Award ID(s):
- 2141099
- PAR ID:
- 10480679
- Publisher / Repository:
- World Scientific
- Date Published:
- Journal Name:
- Journal of Medical Robotics Research
- Volume:
- 07
- Issue:
- 04
- ISSN:
- 2424-905X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The goal of this paper is to study limiting behavior of a self-organized continuous flock evolving according to the 1D hydrodynamic Euler Alignment model. We provide a series of quantitative estimates that show how far the density of the limiting flock is from a uniform distribution. The key quantity that controls density distortion is the entropy [Formula: see text], and the measure of deviation from uniformity is given by a well-known conserved quantity [Formula: see text], where [Formula: see text] is velocity and [Formula: see text] is the communication operator with kernel [Formula: see text]. The cases of Lipschitz, singular geometric, and topological kernels are covered in the study.more » « less
-
IntroductionThe correlation between cervical alignment and clinical outcome of total disc replacement (TDR) surgery is arguable. We believe that this conflict exists because the parameters that influence the biomechanics of the cervical spine are not well understood, specifically the effect of TDR on different cervical alignments. Methods:A validated osseo-ligamentous model from C2-C7 was used in this study. The C2-C7 Cobb angle of the base model was modified to represent: lordotic (−10°), straight (0°), and kyphotic (+10°) cervical alignment. The TDR surgery was simulated at the C5-C6 segment. The range of motion (ROM), intradiscal pressure, annular stresses, and facet loads were computed for all the models. Results:The ROM results demonstrated kyphotic alignment after TDR surgery to be the most mobile when compared to intact base model (41% higher in flexion–extension, 51% higher in lateral bending, and 27% higher in axial rotation) followed by straight and lordotic alignment, respectively. The annular stresses for the kyphotic alignment when compared to intact base model were higher at the index level (33% higher in flexion–extension and 48% higher in lateral bending) compared to other alignments. The lordotic model demonstrated higher facet contact forces at the index level (75% higher in extension than kyphotic alignment, 51% higher in lateral bending than kyphotic alignment, and 78% higher in axial rotation than kyphotic alignment) when compared among the three alignment models. Conclusion:Preoperative cervical alignment should be an integral part of surgical planning for TDR surgery as different cervical alignments may significantly alter the postsurgical outcomes.more » « less
-
This publication documents measurement data for two in-situ loaded fracture mechanics specimens observed with 3D X-ray microscopy. Materials The diaphysis of a human (92-year-old, male) cadaveric femur was obtained through the Indiana University School of Medicine Anatomical Donation Program. Bars (nominally 4.0 mm x 4.0 mm cross section) were extracted from the diaphysis as demonstrated in Figure-samplelocation. Two single Edge Notch Bend, SEN(B), specimens for a load span s=20 mm were machined for a three-point bend fixture for crack growth in the transverse direction. SEN(B) specimens had the following dimensions (height d, depth b, initial crack length a0): beam 1 d=4.0 mm, b=4.0 mm, a0=1.8 mm, beam 2 d=4.1 mm, b=3.9 mm, a0=1.7 mm). Osteon diameter was measured was measured on polished sections by using backscatter SEM images following Britz (2009), Figure samplelocation.jpg. Using ImageJ, a grid is imposed on the images and On.Dm is determined as the Feret Diameter for at least 40 On.Dm measures. For beam 1 mean On.Dm is 242 micrometer and for beam 2 284 micrometer. Experiments and Data Fracture experiments were conducted with a Deben 5000 load rig in a Zeiss XRADIA 3D microscope. For system details see https://www.physics.purdue.edu/xrm/about-our-instruments/index.html. Data for these experiments is given in the two csv files of this project data set. In these experiments force F (load cell) data and image frame data are obtained as machine output. Crack mouth opening displacement (CMOD) is obtained from 3D X-ray images at frame numbers synchronized to force readings. Fracture process zone (FPZ) length L. FPZ length data is obtained from 3D image data in Gallaway, G. E.; Allen, M. R.; Surowiec, R. K.; Siegmund, T. H. (2025). 3D Image Data from In-situ X-ray Imaging Transverse Crack Growth Experiments in Human Cortical Bone. Purdue University Research Repository. doi:10.4231/94PZ-AB06 Code Code (Analysis_Main.m, Analysis_Func.m) takes data from the .csv files and determines the linear elastic fracture mechanics quantities (LEFM toughness), the quasi-brittle fracture mechanics quantities (QBFM toughness), and the tissue intrinsic (size-independent) fracture properties (tissue toughness, tissue strength, tissue lengthscale). Output is depicted as force-CMOD and fracture process zone length - CMOD records, and as crack growth resistance curves (quasibrittle energy release rate vs. fracture process zone length). In addition, the microstructure constant eta is obtained as the ratio between the tissue intrinsic lengthscale and the mean osteon diameter. Code (P_star.m) is provided to determine maximum sustainable load of a femoral shaft in three-point bending. It is assumed that the beam is a pipe with a surface crack of depth equal to the mean osteon diameter. This code can be used for sensitivity studies of the dependence of whole bone maximum sustainable load on cortical thickness, tissue intrinsic strength and microstructure constant eta. Example calculations are depicted in two relevant figures.more » « less
-
Breaking waves modulate the transfer of energy, momentum, and mass between the ocean and atmosphere, controlling processes critical to the climate system, from gas exchange of carbon dioxide and oxygen to the generation of sea spray aerosols that can be transported in the atmosphere and serve as cloud condensation nuclei. The smallest components, i.e., drops and bubbles generated by breaking waves, play an outsize role. This fascinating problem is characterized by a wide range of length scales, from wind forcing the wave field at scales of [Formula: see text](1 km–0.1 m) to the dynamics of wave breaking at [Formula: see text](10–0.1 m); air bubble entrainment, dynamics, and dissolution in the water column at [Formula: see text](1 m–10 μm); and bubbles bursting at [Formula: see text](10 mm–1 μm), generating sea spray droplets at [Formula: see text](0.5 mm–0.5 μm) that are ejected into atmospheric turbulent boundary layers. I discuss recent progress to bridge these length scales, identifying the controlling processes and proposing a path toward mechanistic parameterizations of air–sea mass exchange that naturally accounts for sea state effects.more » « less
An official website of the United States government

