skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Value-based Fast and Slow AI Nudging
Nudging is a behavioral strategy aimed at influencing people’s thoughts and actions. Nudging techniques can be found in many situations in our daily lives, and these nudging techniques can targeted at human fast and unconscious thinking, e.g., by using images to generate fear or the more careful and effortful slow thinking, e.g., by releasing information that makes us reflect on our choices. In this paper, we propose and discuss a value-based AI-human collaborative framework where AI systems nudge humans by proposing decision recommendations. Three different nudging modalities, based on when recommendations are presented to the human, are intended to stimulate human fast thinking, slow thinking, or meta-cognition. Values that are relevant to a specific decision scenario are used to decide when and how to use each of these nudging modalities. Examples of values are decision quality, speed, human upskilling and learning, human agency, and privacy. Several values can be present at the same time, and their priorities can vary over time. The framework treats values as parameters to be instantiated in a specific decision environment.  more » « less
Award ID(s):
2007955
PAR ID:
10480713
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
CEUR Workshop Proceedings (CEUR-WS.org)
Date Published:
Journal Name:
Proceedings of the Workshop on Ethics and Trust in Human-AI Collaboration: Socio-Technical Approaches (ETHAICS 2023)
Format(s):
Medium: X
Location:
Macao, China
Sponsoring Org:
National Science Foundation
More Like this
  1. Current AI systems lack several important human capabilities, such as adaptability, generalizability, selfcontrol, consistency, common sense, and causal reasoning. We believe that existing cognitive theories of human decision making, such as the thinking fast and slow theory, can provide insights on how to advance AI systems towards some of these capabilities. In this paper, we propose a general architecture that is based on fast/slow solvers and a metacognitive component. We then present experimental results on the behavior of an instance of this architecture, for AI systems that make decisions about navigating in a constrained environment. We show how combining the fast and slow decision modalities, which can be implemented by learning and reasoning components respectively, allows the system to evolve over time and gradually pass from slow to fast thinking with enough experience, and that this greatly helps in decision quality, resource consumption, and efficiency. 
    more » « less
  2. Recent advances in AI models have increased the integration of AI-based decision aids into the human decision making process. To fully unlock the potential of AI- assisted decision making, researchers have computationally modeled how humans incorporate AI recommendations into their final decisions, and utilized these models to improve human-AI team performance. Meanwhile, due to the “black-box” nature of AI models, providing AI explanations to human decision makers to help them rely on AI recommendations more appropriately has become a common practice. In this paper, we explore whether we can quantitatively model how humans integrate both AI recommendations and explanations into their decision process, and whether this quantitative understanding of human behavior from the learned model can be utilized to manipulate AI explanations, thereby nudging individuals towards making targeted decisions. Our extensive human experiments across various tasks demonstrate that human behavior can be easily influenced by these manipulated explanations towards targeted outcomes, regardless of the intent being adversarial or benign. Furthermore, individuals often fail to detect any anomalies in these explanations, despite their decisions being affected by them. 
    more » « less
  3. Recent advances in AI models have increased the integration of AI-based decision aids into the human decision making process. To fully unlock the potential of AI-assisted decision making, researchers have computationally modeled how humans incorporate AI recommendations into their final decisions, and utilized these models to improve human-AI team performance. Meanwhile, due to the black-box'' nature of AI models, providing AI explanations to human decision makers to help them rely on AI recommendations more appropriately has become a common practice. In this paper, we explore whether we can quantitatively model how humans integrate both AI recommendations and explanations into their decision process, and whether this quantitative understanding of human behavior from the learned model can be utilized to manipulate AI explanations, thereby nudging individuals towards making targeted decisions. Our extensive human experiments across various tasks demonstrate that human behavior can be easily influenced by these manipulated explanations towards targeted outcomes, regardless of the intent being adversarial or benign. Furthermore, individuals often fail to detect any anomalies in these explanations, despite their decisions being affected by them. 
    more » « less
  4. AI-assisted decision-making systems hold immense potential to enhance human judgment, but their effectiveness is often hindered by a lack of understanding of the diverse ways in which humans take AI recommendations. Current research frequently relies on simplified, ``one-size-fits-all'' models to characterize an average human decision-maker, thus failing to capture the heterogeneity of people's decision-making behavior when incorporating AI assistance. To address this, we propose Mix and Match (M&M), a novel computational framework that explicitly models the diversity of human decision-makers and their unique patterns of relying on AI assistance. M&M represents the population of decision-makers as a mixture of distinct decision-making processes, with each process corresponding to a specific type of decision-maker. This approach enables us to infer latent behavioral patterns from limited data of human decisions under AI assistance, offering valuable insights into the cognitive processes underlying human-AI collaboration. Using real-world behavioral data, our empirical evaluation demonstrates that M&M consistently outperforms baseline methods in predicting human decision behavior. Furthermore, through a detailed analysis of the decision-maker types identified in our framework, we provide quantitative insights into nuanced patterns of how different individuals adopt AI recommendations. These findings offer implications for designing personalized and effective AI systems based on the diverse landscape of human behavior patterns in AI-assisted decision-making across various domains. 
    more » « less
  5. AI-assisted decision making becomes increasingly prevalent, yet individuals often fail to utilize AI-based decision aids appropriately especially when the AI explanations are absent, potentially as they do not reflect on AI’s decision recommendations critically. Large language models (LLMs), with their exceptional conversational and analytical capabilities, present great opportunities to enhance AI-assisted decision making in the absence of AI explanations by providing natural-language-based analysis of AI’s decision recommendation, e.g., how each feature of a decision making task might contribute to the AI recommendation. In this paper, via a randomized experiment, we first show that presenting LLM-powered analysis of each task feature, either sequentially or concurrently, does not significantly improve people’s AI-assisted decision performance. To enable decision makers to better leverage LLM-powered analysis, we then propose an algorithmic framework to characterize the effects of LLM-powered analysis on human decisions and dynamically decide which analysis to present. Our evaluation with human subjects shows that this approach effectively improves decision makers’ appropriate reliance on AI in AI-assisted decision making. 
    more » « less