skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Combining Fast and Slow Thinking for Human-like and Efficient Decisions in Constrained Environments
Current AI systems lack several important human capabilities, such as adaptability, generalizability, selfcontrol, consistency, common sense, and causal reasoning. We believe that existing cognitive theories of human decision making, such as the thinking fast and slow theory, can provide insights on how to advance AI systems towards some of these capabilities. In this paper, we propose a general architecture that is based on fast/slow solvers and a metacognitive component. We then present experimental results on the behavior of an instance of this architecture, for AI systems that make decisions about navigating in a constrained environment. We show how combining the fast and slow decision modalities, which can be implemented by learning and reasoning components respectively, allows the system to evolve over time and gradually pass from slow to fast thinking with enough experience, and that this greatly helps in decision quality, resource consumption, and efficiency.  more » « less
Award ID(s):
2007955
PAR ID:
10386117
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 16th International Workshop on Neural-Symbolic Learning and Reasoning (NeSy) 2022
Page Range / eLocation ID:
171-185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nudging is a behavioral strategy aimed at influencing people’s thoughts and actions. Nudging techniques can be found in many situations in our daily lives, and these nudging techniques can targeted at human fast and unconscious thinking, e.g., by using images to generate fear or the more careful and effortful slow thinking, e.g., by releasing information that makes us reflect on our choices. In this paper, we propose and discuss a value-based AI-human collaborative framework where AI systems nudge humans by proposing decision recommendations. Three different nudging modalities, based on when recommendations are presented to the human, are intended to stimulate human fast thinking, slow thinking, or meta-cognition. Values that are relevant to a specific decision scenario are used to decide when and how to use each of these nudging modalities. Examples of values are decision quality, speed, human upskilling and learning, human agency, and privacy. Several values can be present at the same time, and their priorities can vary over time. The framework treats values as parameters to be instantiated in a specific decision environment. 
    more » « less
  2. Improving the performance and explanations of ML algorithms is a priority for adoption by humans in the real world. In critical domains such as healthcare, such technology has significant potential to reduce the burden on humans and considerably reduce manual assessments by providing quality assistance at scale. In today’s data-driven world, artificial intelligence (AI) systems are still experiencing issues with bias, explainability, and human-like reasoning and interpretability. Causal AI is the technique that can reason and make human-like choices making it possible to go beyond narrow Machine learning-based techniques and can be integrated into human decision-making. It also offers intrinsic explainability, new domain adaptability, bias free predictions, and works with datasets of all sizes. In this tutorial of type lecture style, we detail how a richer representation of causality in AI systems using a knowledge graph (KG) based approach is needed for intervention and counterfactual reasoning (Figure 1), how do we get to model-based and domain explainability, how causal representations helps in web and health care. 
    more » « less
  3. Explanations can help users of Artificial Intelligent (AI) systems gain a better understanding of the reasoning behind the model’s decision, facilitate their trust in AI, and assist them in making informed decisions. Due to its numerous benefits in improving how users interact and collaborate with AI, this has stirred the AI/ML community towards developing understandable or interpretable models to a larger degree, while design researchers continue to study and research ways to present explanations of these models’ decisions in a coherent form. However, there is still the lack of intentional design effort from the HCI community around these explanation system designs. In this paper, we contribute a framework to support the design and validation of explainable AI systems; one that requires carefully thinking through design decisions at several important decision points. This framework captures key aspects of explanations ranging from target users, to the data, to the AI models in use. We also discuss how we applied our framework to design an explanation interface for trace link prediction of software artifacts. 
    more » « less
  4. In his book Thinking, Fast and Slow , Daniel Kahneman presented a model of human cognition based on two modes or ‘systems’ of thinking: system 1 thinking that is fast and intuitive and system 2 thinking that is slow and tedious. This paper proposes a framework for applying Kahneman’s model to designing based on the function–behaviour–structure ontology. It casts four instances of designing in this framework: design fixation, case-based design, pattern-language-based design and brainstorming. 
    more » « less
  5. Many domains of AI and its effects are established, which mainly rely on their integration modeling cognition of human and AI agents, collecting and representing knowledge using them at the human level, and maintaining decision-making processes towards physical action eligible to and in cooperation with humans. Especially in human-robot interaction, many AI and robotics technologies are focused on human- robot cognitive modeling, from visual processing to symbolic reasoning and from reactive control to action recognition and learning, which will support human-multi-agent cooperative achieving tasks. However, the main challenge is efficiently combining human motivations and AI agents’ purposes in a sharing architecture and reaching a consensus in complex environments and missions. To fill this gap, this workshop brings together researchers from different communities inter- ested in multi-agent systems (MAS) and human-robot interaction (HRI) to explore potential approaches, future research directions, and domains in human-multi-agent cognitive fusion. 
    more » « less