skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Waring's problem: Beyond Freĭman's theorem
Abstract Let satisfy . Freĭman's theorem shows that when , there exists such that all large integers are represented in the form , with , if and only if diverges. We make this theorem effective by showing that, for each fixed , it suffices to impose the conditionMore is established when the sequence of exponents forms an arithmetic progression. Thus, for example, when and , all large integers are represented in the form , with .  more » « less
Award ID(s):
2001549 1854398
PAR ID:
10480764
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Oxford University Press (OUP)
Date Published:
Journal Name:
Journal of the London Mathematical Society
Volume:
109
Issue:
1
ISSN:
0024-6107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A nonlinear version of Roth's theorem states that dense sets of integers contain configurations of the form , , . We obtain a multidimensional version of this result, which can be regarded as a first step toward effectivising those cases of the multidimensional polynomial Szemerédi theorem involving polynomials with distinct degrees. In addition, we prove an effective “popular” version of this result, showing that every dense set has some non‐zero such that the number of configurations with difference parameter is almost optimal. Perhaps surprisingly, the quantitative dependence in this result is exponential, compared to the tower‐type bounds encountered in the popular linear Roth theorem. 
    more » « less
  2. Let [Formula: see text] be an integer and [Formula: see text] be a finite field with [Formula: see text] elements. We prove several results on the distribution in short intervals of polynomials in [Formula: see text] that are not divisible by the [Formula: see text]th power of any non-constant polynomial. Our main result generalizes a recent theorem by Carmon and Entin on the distribution of squarefree polynomials to all [Formula: see text]. We also develop polynomial versions of the classical techniques used to study gaps between [Formula: see text]-free integers in [Formula: see text]. We apply these techniques to obtain analogs in [Formula: see text] of some classical theorems on the distribution of [Formula: see text]-free integers. The latter results complement the main theorem in the case when the degrees of the polynomials are of moderate size. 
    more » « less
  3. Fix an r-coloring of the pairs of natural numbers. An ordered list of distinct integers, is a monochromatic path for color k, if every two adjacent integers in the list have the same color. A path decomposition for the coloring is a collection of r paths P0,P1,...,Pr−1 such that Pj is a path of color j and every integer appears on exactly one path. Improving on an unpublished result of Erdos, Rado published a theorem which implies: Every r- coloring of the pairs of natural numbers has a path decomposition. We analyse the effective content of this theorem. 
    more » « less
  4. We examine correlations of the Möbius function over $$\mathbb{F}_{q}[t]$$ with linear or quadratic phases, that is, averages of the form 1 $$\begin{eqnarray}\frac{1}{q^{n}}\mathop{\sum }_{\deg f0$$ if $$Q$$ is linear and $$O(q^{-n^{c}})$$ for some absolute constant $c>0$ if $$Q$$ is quadratic. The latter bound may be reduced to $$O(q^{-c^{\prime }n})$$ for some $$c^{\prime }>0$$ when $Q(f)$ is a linear form in the coefficients of $$f^{2}$$ , that is, a Hankel quadratic form, whereas, for general quadratic forms, it relies on a bilinear version of the additive-combinatorial Bogolyubov theorem. 
    more » « less
  5. Abstract Letfs, k(n)be the maximum possible number ofs‐term arithmetic progressions in a set ofnintegers which contains nok‐term arithmetic progression. For all fixed integersk > s ≥ 3, we prove thatfs, k(n) = n2 − o(1), which answers an old question of Erdős. In fact, we prove upper and lower bounds forfs, k(n)which show that its growth is closely related to the bounds in Szemerédi's theorem. 
    more » « less