skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Short interval results for powerfree polynomials over finite fields
Let [Formula: see text] be an integer and [Formula: see text] be a finite field with [Formula: see text] elements. We prove several results on the distribution in short intervals of polynomials in [Formula: see text] that are not divisible by the [Formula: see text]th power of any non-constant polynomial. Our main result generalizes a recent theorem by Carmon and Entin on the distribution of squarefree polynomials to all [Formula: see text]. We also develop polynomial versions of the classical techniques used to study gaps between [Formula: see text]-free integers in [Formula: see text]. We apply these techniques to obtain analogs in [Formula: see text] of some classical theorems on the distribution of [Formula: see text]-free integers. The latter results complement the main theorem in the case when the degrees of the polynomials are of moderate size.  more » « less
Award ID(s):
2149865
PAR ID:
10570278
Author(s) / Creator(s):
; ;
Publisher / Repository:
World Scientific
Date Published:
Journal Name:
International Journal of Number Theory
Volume:
20
Issue:
03
ISSN:
1793-0421
Page Range / eLocation ID:
867 to 892
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the dynamics of the unicritical polynomial family [Formula: see text]. The [Formula: see text]-values for which [Formula: see text] has a strictly preperiodic postcritical orbit are called Misiurewicz parameters, and they are the roots of Misiurewicz polynomials. The arithmetic properties of these special parameters have found applications in both arithmetic and complex dynamics. In this paper, we investigate some new such properties. In particular, when [Formula: see text] is a prime power and [Formula: see text] is a Misiurewicz parameter, we prove certain arithmetic relations between the points in the postcritical orbit of [Formula: see text]. We also consider the algebraic integers obtained by evaluating a Misiurewicz polynomial at a different Misiurewicz parameter, and we ask when these algebraic integers are algebraic units. This question naturally arises from some results recently proven by Buff, Epstein, and Koch and by the second author. We propose a conjectural answer to this question, which we prove in many cases. 
    more » « less
  2. Let [Formula: see text] be a set of positive integers, [Formula: see text] denoting the largest element, so that for any two of the [Formula: see text] subsets the sum of all elements is distinct. Erdős asked whether this implies [Formula: see text] for some universal [Formula: see text]. We prove, slightly extending a result of Elkies, that for any [Formula: see text], [Formula: see text] with equality if and only if all subset sums are [Formula: see text]-separated. This leads to a new proof of the currently best lower bound [Formula: see text]. The main new insight is that having distinct subset sums and [Formula: see text] small requires the random variable [Formula: see text] to be close to Gaussian in a precise sense. 
    more » « less
  3. This work aims to prove a Hardy-type inequality and a trace theorem for a class of function spaces on smooth domains with a nonlocal character. Functions in these spaces are allowed to be as rough as an [Formula: see text]-function inside the domain of definition but as smooth as a [Formula: see text]-function near the boundary. This feature is captured by a norm that is characterized by a nonlocal interaction kernel defined heterogeneously with a special localization feature on the boundary. Thus, the trace theorem we obtain here can be viewed as an improvement and refinement of the classical trace theorem for fractional Sobolev spaces [Formula: see text]. Similarly, the Hardy-type inequalities we establish for functions that vanish on the boundary show that functions in this generalized space have the same decay rate to the boundary as functions in the smaller space [Formula: see text]. The results we prove extend existing results shown in the Hilbert space setting with p = 2. A Poincaré-type inequality we establish for the function space under consideration together with the new trace theorem allows formulating and proving well-posedness of a nonlinear nonlocal variational problem with conventional local boundary condition. 
    more » « less
  4. Abstract We generalize the shuffle theorem and its $(km,kn)$ version, as conjectured by Haglund et al. and Bergeron et al. and proven by Carlsson and Mellit, and Mellit, respectively. In our version the $(km,kn)$ Dyck paths on the combinatorial side are replaced by lattice paths lying under a line segment whose x and y intercepts need not be integers, and the algebraic side is given either by a Schiffmann algebra operator formula or an equivalent explicit raising operator formula. We derive our combinatorial identity as the polynomial truncation of an identity of infinite series of $$\operatorname {\mathrm {GL}}_{l}$$ characters, expressed in terms of infinite series versions of LLT polynomials. The series identity in question follows from a Cauchy identity for nonsymmetric Hall–Littlewood polynomials. 
    more » « less
  5. This paper is a sequel to [Monatsh. Math. 194 (2021) 523–554] in which results of that paper are generalized so that they hold in the setting of inhomogeneous Diophantine approximation. Given any integers [Formula: see text] and [Formula: see text], any [Formula: see text], and any homogeneous function [Formula: see text] that satisfies a certain nonsingularity assumption, we obtain a biconditional criterion on the approximating function [Formula: see text] for a generic element [Formula: see text] in the [Formula: see text]-orbit of [Formula: see text] to be (respectively, not to be) [Formula: see text]-approximable at [Formula: see text]: that is, for there to exist infinitely many (respectively, only finitely many) [Formula: see text] such that [Formula: see text] for each [Formula: see text]. In this setting, we also obtain a sufficient condition for uniform approximation. We also consider some examples of [Formula: see text] that do not satisfy our nonsingularity assumptions and prove similar results for these examples. Moreover, one can replace [Formula: see text] above by any closed subgroup of [Formula: see text] that satisfies certain integrability axioms (being of Siegel and Rogers type) introduced by the authors in the aforementioned previous paper. 
    more » « less