skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimization of a Do-It-Yourself Air Cleaner Design to Reduce Residential Air Pollution Exposure for a Community Experiencing Environmental Injustices
The large-scale deployment of Do-it-yourself (DIY) air cleaners, especially in communities that historically bear the brunt of air pollution exposure-related injustices, provides communities a cost-effective option to reduce personal indoor exposure to particulate matter. In this study, we developed nine air cleaner prototypes, altering filter depth and the number and type of filters, and compared their PM2.5 removal effectiveness and maintenance-related parameters prior to deployment in North Denver, Colorado homes. Prototypes containing multiple high efficiency particulate air filters with a minimum reporting value of 13 (MERV13) had higher clean air delivery rates (CADR, >300 m3 h−1) compared to prototypes using a single filter (100–200 m3 h−1), but single-filter designs had comparable values of CADR normalized by initial and annual operating costs. Based on performance, cost, build time, and feedback from the community regarding concerns related to volatile organic compound exposure, the selected prototype (P9) used a combination of an activated carbon filter and single MERV13 filter with a 10.16 cm (4-inch) depth. Following this assessment, 120 of the selected air cleaner prototypes were built and deployed in homes around the communities in North Denver for two separate cohorts; feedback regarding their usage over the course of the deployment showed that in addition to the increased noise levels perceived by the participants, factors such as cold air flow from the air cleaner impacting the thermal comfort and aesthetics of the design reduced their usage time in homes. Future designs of DIY air cleaners could incorporate this feedback to help design improved features such as quieter air cleaners and real-time pollutant monitoring feedback to prompt users to keep them operational at all times of the day.  more » « less
Award ID(s):
1952223
PAR ID:
10480877
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Atmosphere
Volume:
14
Issue:
12
ISSN:
2073-4433
Page Range / eLocation ID:
1734
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ambient fine particulate matter (PM2.5) is the world’s leading environmental health risk factor. Quantification is needed of regional contributions to changes in global PM2.5exposure. Here we interpret satellite-derived PM2.5estimates over 1998-2019 and find a reversal of previous growth in global PM2.5air pollution, which is quantitatively attributed to contributions from 13 regions. Global population-weighted (PW) PM2.5exposure, related to both pollution levels and population size, increased from 1998 (28.3 μg/m3) to a peak in 2011 (38.9 μg/m3) and decreased steadily afterwards (34.7 μg/m3in 2019). Post-2011 change was related to exposure reduction in China and slowed exposure growth in other regions (especially South Asia, the Middle East and Africa). The post-2011 exposure reduction contributes to stagnation of growth in global PM2.5-attributable mortality and increasing health benefits per µg/m3marginal reduction in exposure, implying increasing urgency and benefits of PM2.5mitigation with aging population and cleaner air. 
    more » « less
  2. The impacts of wildfires along the wildland urban interface (WUI) on atmospheric particulate concentrations and composition are an understudied source of air pollution exposure. To assess the residual impacts of the 2021 Marshall Fire (Colorado), a wildfire that predominantly burned homes and other human-made materials, on homes within the fire perimeter that escaped the fire, we performed a combination of fine particulate matter (PM2.5) filter sampling and chemical analysis, indoor dust collection and chemical analysis, community scale PurpleAir PM2.5 analysis, and indoor particle number concentration measurements. Following the fire, the chemical speciation of dust collected in smoke-affected homes in the burned zone showed elevated concentrations of the biomass burning marker levoglucosan (medianlevo = 4147 ng g−1), EPA priority toxic polycyclic aromatic hydrocarbons (median Σ16PAH = 1859.3 ng g−1), and metals (median Σ20Metals = 34.6 mg g−1) when compared to samples collected in homes outside of the burn zone 6 months after the fire. As indoor dust particles are often resuspended and can become airborne, the enhanced concentration of hazardous metals and organics within dust samples may pose a threat to human health. Indoor airborne particulate organic carbon (median = 1.91 μg m−3), particulate elemental carbon (median = .02 μg m−3), and quantified semi-volatile organic species in PM2.5 were found in concentrations comparable to ambient air in urban areas across the USA. Particle number and size distribution analysis at a heavily instrumented supersite home located immediately next to the burned area showed indoor particulates in low concentrations (below 10 μg m−3) across various sizes of PM (12 nm–20 μm), but were elevated by resuspension from human activity, including cleaning. 
    more » « less
  3. Protection against airborne viruses has become very relevant since the outbreak of SARS-CoV-2. Nonwoven face masks along with heating, ventilation, and air conditioning (HVAC) filters have been used extensively to reduce infection rates; however, some of these filter materials provide inadequate protection due to insufficient initial filtration efficiency (FE) and FE decrease with time. Flat sheet porous membranes, which have been used extensively to filter waterborne microbes and particulate matter due to their high FE have the potential to filter air pollutants without compromising its FE over time. Therefore, in this study, single layer polysulfone (PSf) membranes were fabricated via non-solvent induced phase separation (NIPS) and were tested for airflow rate, pressure drop and FE. Polyethylene glycol (PEG) and glycerol were employed as pore-forming agents, and the effect of the primary polymer and pore-forming additive molecular weights (MW) on airflow rate and pressure drop were studied at different concentrations. The thermodynamic stability of dope solutions with different MWs of PSf and PEG in N-methylpyrrolidone (NMP) at different concentrations was determined using cloud-point measurements to construct a ternary phase diagram. Surface composition of the fabricated membranes was characterized using contact angle and X-ray photoelectron spectroscopy (XPS), while membrane morphology was characterized by SEM, and tensile strength experiments were performed to analyze the membrane mechanical strength (MS). It was observed that an increase in PSf and PEG molecular weight and concentration increased airflow and decreased pressure drop. PSf60:PEG20:NMP (15:15:70)% w/w showed the highest air flow rate and lowest pressure drop, but at the expense of the mechanical strength, which was improved significantly by attaching the membrane to a 3D-printed polypropylene support. Lastly, the FE values of the membranes were similar to those of double-layer N95 filters and significantly higher than those of single layer of N95, surgical mask and HVAC (MERV 11) filters. 
    more » « less
  4. null (Ed.)
    Inorganic carbonate can be an important component of atmospheric particulate matter in arid environments where mineral dust components contribute significantly to air particulate matter. Carbonate carbon (CC) is only rarely quantified in atmospheric studies and methods to quantify carbonate in atmospheric samples are rare. In this manuscript, we present a novel protocol for quantifying carbonate carbon in atmospheric particulate matter samples, through the acidification of aerosol filters at ambient pressure and temperature and subsequent measurement of carbon dioxide (CO2) released upon acidification. This method is applicable to a variety of filter media used in air pollution studies, such as Teflon, cellulose, or glass fiber filters. The method allows the customization of the filter area used for analysis (up to 24 cm2) so that sufficient CO2 can be detected when released and to assure that the sample aliquot is representative of the whole filter. The resulting detection limits can be as low as 0.12 µg/cm2. The analysis of a known amount of sodium bicarbonate applied to a filter resulted in a relative error within 15% of the known mass of bicarbonate when measured 20 min after acidification. A particulate matter sample with aerodynamic diameter larger than 2.5 µm (PM>2.5) collected via cascade impaction on a high-volume aerosol sampler yielded good precision, with a CC concentration of 4.4 ± 0.3 µgC/cm2 for six replicates. The precision, accuracy, and reproducibility of this method of CC measurement make it a good alternative to existing quantification methods. 
    more » « less
  5. Air leakages pose a major problem in both residential and commercial buildings. They increase the utility bill and result in excessive usage of Heating Ventilation and Air Conditioning (HVAC) systems, which impacts the environment and causes discomfort to residents. Repairing air leakages in a building is an expensive and time intensive task. Even detecting the leakages can require extensive professional testing. In this paper, we propose a method to identify the leaky homes from a set, provided their energy consumption data is accessible from residential smart meters. In the first phase, we employ a Non-Intrusive Load Monitoring (NILM) technique to disaggregate the HVAC data from total power consumption for several homes. We propose a recurrent neural network and a denoising autoencoder based approach to identify the 'ON' and 'OFF' cycles of the HVACs and their overall usages. We categorize the typical HVAC consumption of about 200 homes and any probable insulation and leakage problems using the Air Changes per Hour at 50 Pa (ACH50) metric in the Dataport datasets. We perform our proposed NILM analysis on different granularities of smart meter data such as 1 min, 15 mins, and 1 hour to observe its effect on classifying the leaky homes. Our results show that disaggregation can be used to identify the residential air-conditioning, at 1 min granularity which in turn helps us to identify the leaky potential homes, with an accuracy of 86%. 
    more » « less