Following the current development of the wireless technology landscape, and with respect to the constant growth in user demands, it is inevitable that next-generation mobile wireless networks will use new frequency bands located in the sub-terahertz and terahertz (THz) spectrum to complement the existing microwave and millimeter wave (mmWave) channels. The feasibility of point-to-point stationary THz communication links has already been experimentally demonstrated. To build upon this breakthrough, one of the pressing research targets is making THz communication systems truly mobile. Achieving this target is especially complicated because mobile THz wireless systems (including WLANs and even cellular access) will often operate in the near-field due to the very large (even though physically small) electrical size of the high-gain antenna systems required for making high-rate communication links feasible at such frequencies. This perspective article presents several key prospective research challenges envisioned on the way to designing efficient mobile near-field THz wireless access as a part of 6G and 7G wireless landscapes.
more »
« less
Climate Change Sensing through Terahertz Communication Infrastructure: A Disruptive Application of 6G Networks
Climate change resulting from releasing greenhouse gases into the atmosphere continues to affect the Earth’s ecosystem. This pressing issue is driving the development of novel technologies to sense and measure harmful gas emissions. In parallel, the evolution of wireless communication networks requires the wider deployment of mobile telecommunication infrastructure. The terahertz (THz) spectrum is currently under-utilized but is expected to feature in 6G. The use of this spectrum is explored simultaneously for ultra-broadband communication and atmospheric sensing. For atmospheric sensing, the absorption of THz signals by gas molecules is used to estimate atmospheric gas composition. Molecular absorption loss profiles for each gas isotopologue are taken from the HITRAN database and compared with data from transceivers in sensing mode. Preliminary results are presented, showing the effects of signal path loss and power spectral density. A 6G network architecture is proposed to indicate how 6G infrastructure can perform climate change sensing, in addition to its primary purpose of wireless communication.
more »
« less
- PAR ID:
- 10480952
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Network
- ISSN:
- 0890-8044
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sub-Terahertz (THz) frequencies between 100 GHz and 300 GHz are being considered as a key enabler for the sixthgeneration (6G) wireless communications due to the vast amounts of unused spectrum. The 3rd Generation Partnership Project (3GPP) included the indoor industrial environments as a scenario of interest since Release 15. This paper presents recent sub- THz channel measurements using directional horn antennas of 27 dBi gain at 142 GHz in a factory building, which hosts equipment manufacturing startups. Directional measurements with copolarized and cross-polarized antenna configurations were conducted over distances from 6 to 40 meters. Omnidirectional and directional path loss with two antenna polarization configurations produce the gross cross-polarization discrimination (XPD) with a mean of 27.7 dB, which suggests that dual-polarized antenna arrays can provide good multiplexing gain for sub-THz wireless systems. The measured power delay profile and power angular spectrum show the maximum root mean square (RMS) delay spread of 66.0 nanoseconds and the maximum RMS angular spread of 103.7 degrees using a 30 dB threshold, indicating the factory scenario is a rich-scattering environment due to a massive number of metal structures and objects. This work will facilitate emerging sub-THz applications such as super-resolution sensing and positioning for future smart factories.more » « less
-
Terahertz frequency bands will likely be used for the next-generation wireless communication systems to provide data rates of hundreds of Gbps or even Tbps because of the wide swaths of unused and unexplored spectrum. This paper presents two outdoor wideband measurement campaigns in downtown Brooklyn (urban microcell environment) in the sub-THz band of 140 GHz with TX-RX separation distance up to 100 m: i) terrestrial urban microcell measurement campaign, and ii) rooftop surrogate satellite and backhaul measurement campaign. Outdoor omnidirectional and directional path loss models for both line-of-sight and non-line-of-sight scenarios, as well as foliage loss (signal attenuation through foliage), are provided at 140 GHz for urban microcell environments. These measurements and models provide an understanding of both the outdoor terrestrial (e.g., 6G cellular and backhaul) and non-terrestrial (e.g., satellite and unmanned aerial vehicle communications) wireless channels, and prove the feasibility of using THz frequency bands for outdoor fixed and mobile cellular communications. This paper can be used for future outdoor wireless system design at frequencies above 100 GHz.more » « less
-
Abstract—Comparisons of outdoor Urban Microcell (UMi) large-scale path loss models, root mean square (RMS) delay spreads (DS), angular spreads (AS), and the number of spatial beams for extensive measurements performed at 28, 38, 73, and 142 GHz are presented in this letter. Measurement campaigns were conducted from 2011-2020 in downtown Austin, Texas, Manhattan (New York City), and Brooklyn, New York with communication ranges up to 930 m. Key similarities and differences in outdoor wireless channels are observed when comparing the channel statistics across a wide range of frequencies from millimeter-wave to sub-THz bands. Path loss exponents (PLEs) are remarkably similar over all measured frequencies, when referenced to the first meter free space path loss, and the RMS DS and AS decrease as frequency increases. The similar PLEs from millimeter-wave to THz frequencies imply that spacing between cellular base stations will not have to change as carrier frequencies increase towards THz, since wider bandwidth channels at sub-THz or THz carrier frequencies will cover similar distances because antenna gains increase quadratically with increasing frequency when the physical antenna area remain constant. Index Terms—5G; mmWave; 6G; THz; outdoor channel models; UMi; RMS delay and angular spread.more » « less
-
Integrated sensing and communication (ISAC) is considered an emerging technology for 6th-generation (6G) wireless and mobile networks. It is expected to enable a wide variety of vertical applications, ranging from unmanned aerial vehicles (UAVs) detection for critical infrastructure protection to physiological sensing for mobile healthcare. Despite its significant socioeconomic benefits, ISAC technology also raises unique challenges in system security and user privacy. Being aware of the security and privacy challenges, understanding the trade-off between security and communication performance, and exploring potential countermeasures in practical systems are critical to a wide adoption of this technology in various application scenarios. This talk will discuss various security and privacy threats in emerging ISAC systems with a focus on communication-centric ISAC systems, that is, using the cellular or WiFi infrastructure for sensing. We will then examine potential mechanisms to secure ISAC systems and protect user privacy at the physical and data layers under different sensing modes. At the wireless physical (PHY) layer, an ISAC system is subject to both passive and active attacks, such as unauthorized passive sensing, unauthorized active sensing, signal spoofing, and jamming. Potential countermeasures include wireless channel/radio frequency (RF) environment obfuscation, waveform randomization, anti-jamming communication, and spectrum/RF monitoring. At the data layer, user privacy could be compromised during data collection, sharing, storage, and usage. For sensing systems powered by artificial intelligence (AI), user privacy could also be compromised during the model training and inference stages. An attacker could falsify the sensing data to achieve a malicious goal. Potential countermeasures include the application of privacy enhancing technologies (PETs), such as data anonymization, differential privacy, homomorphic encryption, trusted execution, and data synthesis.more » « less
An official website of the United States government

