In this paper we present a method based on linear programming that facilitates reliable safety verification of hybrid dynamical systems subject to perturbation inputs over the infinite time horizon. The verification algorithm applies the probably approximately correct (PAC) learning framework and consequently can be regarded as statistically formal verification in the sense that it provides formal safety guarantees expressed using error probabilities and confidences. The safety of hybrid systems in this framework is verified via the computation of so-called PAC barrier certificates, which can be computed by solving a linear programming problem. Based on scenario approaches, the linear program is constructed by a family of independent and identically distributed state samples. In this way we can conduct verification of hybrid dynamical systems that existing methods are not capable of dealing with. Some preliminary experiments demonstrate the performance of our approach.
more »
« less
Accuracy Self-Estimation in an 8-Dimensional Quantum State Identification at a Telecom Wavelength
We experimentally obtain single-shot confidences of a state estimation measurement with M=8 arbitrary sets of non-orthogonal states. The 8-dimensional vector of confidences represents the best knowledge of the input state for each individual quantum measurement.
more »
« less
- Award ID(s):
- 1927674
- PAR ID:
- 10481063
- Publisher / Repository:
- IEEE Xplore
- Date Published:
- Journal Name:
- Conference on Lasers and Electro-Optics (CLEO)
- ISSN:
- 2160-8989
- Format(s):
- Medium: X
- Location:
- San Jose, CA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Variational quantum eigensolver (VQE) is a promising algorithm suitable for near-term quantum computers. VQE aims to approximate solutions to exponentially-sized optimization problems by executing a polynomial number of quantum subproblems. However, the number of subproblems scales as N 4 for typical problems of interest-a daunting growth rate that poses a serious limitation for emerging applications such as quantum computational chemistry. We mitigate this issue by exploiting the simultaneous measurability of subproblems corresponding to commuting terms. Our technique transpiles VQE instances into a format optimized for simultaneous measurement, ultimately yielding 8-30x lower cost. Our work also encompasses a synthesis tool for compiling simultaneous measurement circuits with minimal overhead. We demonstrate experimental validation of our techniques by estimating the ground state energy of deuteron with a quantum computer. We also investigate the underlying statistics of simultaneous measurement and devise an adaptive strategy for mitigating harmful covariance terms.more » « less
-
Natural language processing systems are often downstream of unreliable inputs: machine translation, optical character recognition, or speech recognition. For instance, virtual assistants can only answer your questions after understanding your speech. We investigate and mitigate the effects of noise from Automatic Speech Recognition systems on two factoid Question Answering (QA) tasks. Integrating confidences into the model and forced decoding are empirically shown to improve the accuracy of downstream neural QA systems. We create and train models on a novel synthetic corpus of over 500,000 noisy sentences and evaluate on two human corpora from Quizbowl and Jeopardy! competitions.more » « less
-
Recent efforts in deploying Deep Neural Networks for object detection in real world applications, such as autonomous driving, assume that all relevant object classes have been observed during training. Quantifying the performance of these models in settings when the test data is not represented in the training set has mostly focused on pixel-level uncertainty estimation techniques of models trained for semantic segmentation. This paper proposes to exploit additional predictions of semantic segmentation models and quantifying its confidences, followed by classification of object hypotheses as known vs. unknown, out of distribution objects. We use object proposals generated by Region Proposal Network (RPN) and adapt distance aware uncertainty estimation of semantic segmentation using Radial Basis Functions Networks (RBFN) for class agnostic object mask prediction. The augmented object proposals are then used to train a classifier for known vs. unknown objects categories. Experimental results demonstrate that the proposed method achieves parallel performance to state of the art methods for unknown object detection and can also be used effectively for reducing object detectors' false positive rate. Our method is well suited for applications where prediction of non-object background categories obtained by semantic segmentation is reliable.more » « less
-
This paper demonstrates a feasible method for using a deep neural network as a sensor to estimate the attitude of a flying vehicle using only flight video. A dataset of still images and associated gravity vectors was collected and used to perform supervised learning. The network builds on a previously trained network and was trained to be able to approximate the attitude of the camera with an average error of about 8 degrees. Flight test video was recorded and processed with a relatively simple visual odometry method. The aircraft attitude is then estimated with the visual odometry as the state propagation and network providing the attitude measurement in an extended Kalman filter. Results show that the proposed method of having the neural network provide a gravity vector attitude measurement from the flight imagery reduces the standard deviation of the attitude error by approximately 12 times compared to a baseline approach.more » « less
An official website of the United States government

