We present Basis Restricted Elastic Shape Analysis (BaRe-ESA), a novel Riemannian framework for human body scan representation, interpolation and extrapolation. BaRe-ESA operates directly on unregistered meshes, i.e., without the need to establish prior point to point correspondences or to assume a consistent mesh structure. Our method relies on a latent space representation, which is equipped with a Riemannian (non-Euclidean) metric associated to an invariant higher-order metric on the space of surfaces. Experimental results on the FAUST and DFAUST datasets show that BaRe-ESA brings significant improvements with respect to previous solutions in terms of shape registration, interpolation and extrapolation. The efficiency and strength of our model is further demonstrated in applications such as motion transfer and random generation of body shape and pose.
more »
« less
GeoLatent: A Geometric Approach to Latent Space Design for Deformable Shape Generators
We study how to optimize the latent space of neural shape generators that map latent codes to 3D deformable shapes. The key focus is to look at a deformable shape generator from a differential geometry perspective. We define a Riemannian metric based on as-rigid-as-possible and as-conformal-as-possible deformation energies. Under this metric, we study two desired properties of the latent space: 1) straight-line interpolations in latent codes follow geodesic curves; 2) latent codes disentangle pose and shape variations at different scales. Strictly enforcing the geometric interpolation property, however, only applies if the metric matrix is a constant. We show how to achieve this property approximately by enforcing that geodesic interpolations are axis-aligned, i.e., interpolations along coordinate axis follow geodesic curves. In addition, we introduce a novel approach that decouples pose and shape variations via generalized eigendecomposition. We also study efficient regularization terms for learning deformable shape generators, e.g., that promote smooth interpolations. Experimental results on benchmark datasets show that our approach leads to interpretable latent codes, improves the generalizability of synthetic shapes, and enhances performance in geodesic interpolation and geodesic shooting.
more »
« less
- Award ID(s):
- 2047677
- PAR ID:
- 10481154
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Graphics
- Volume:
- 42
- Issue:
- 6
- ISSN:
- 0730-0301
- Page Range / eLocation ID:
- 1 to 20
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The problem of using covariates to predict shapes of objects in a regression setting is important in many fields. A formal statistical approach, termed Geodesic regression model, is commonly used for modeling and analyzing relationships between Euclidean predictors and shape responses. Despite its popularity, this model faces several key challenges, including (i) misalignment of shapes due to pre-processing steps, (ii) difficulties in shape alignment due to imaging heterogeneity, and (iii) lack of spatial correlation in shape structures. This paper proposes a comprehensive geodesic factor regression model that addresses all these challenges. Instead of using shapes as extracted from pre-registered data, it takes a more fundamental approach, incorporating alignment step within the proposed regression model and learns them using both pre-shape and covariate data. Additionally, it specifies spatial correlation structures using low-dimensional representations, including latent factors on the tangent space and isotropic error terms. The proposed framework results in substantial improvements in regression performance, as demonstrated through simulation studies and a real data analysis on Corpus Callosum contour data obtained from the ADNI study.more » « less
-
Many data analysis and design problems involve reasoning about points in high-dimensional space. A common strategy is to embed points from this high-dimensional space into a low-dimensional one. As we will show in this paper, a critical property of good embeddings is that they preserve isometry — i.e., preserving the geodesic distance between points on the original data manifold within their embedded locations in the latent space. However, enforcing isometry is non-trivial for common Neural embedding models, such as autoencoders and generative models. Moreover, while theoretically appealing, it is not clear to what extent enforcing isometry is really necessary for a given design or analysis task. This paper answers these questions by constructing an isometric embedding via an isometric autoencoder, which we employ to analyze an inverse airfoil design problem. Specifically, the paper describes how to train an isometric autoencoder and demonstrates its usefulness compared to non-isometric autoencoders on both simple pedagogical examples and for airfoil embeddings using the UIUC airfoil dataset. Our ablation study illustrates that enforcing isometry is necessary to accurately discover latent space clusters — a common analysis method researchers typically perform on low-dimensional embeddings. We also show how isometric autoencoders can uncover pathologies in typical gradient-based Shape Optimization solvers through an analysis on the SU2-optimized airfoil dataset, wherein we find an over-reliance of the gradient solver on angle of attack. Overall, this paper motivates the use of isometry constraints in Neural embedding models, particularly in cases where researchers or designer intend to use distance-based analysis measures (such as clustering, k-Nearest Neighbors methods, etc.) to analyze designs within the latent space. While this work focuses on airfoil design as an illustrative example, it applies to any domain where analyzing isometric design or data embeddings would be useful.more » « less
-
Many design problems involve reasoning about points in high-dimensional space. A common strategy is to first embed these high-dimensional points into a low-dimensional latent space. We propose that a good embedding should be isometric—i.e., preserving the geodesic distance between points on the data manifold in the latent space. However, enforcing isometry is non-trivial for common neural embedding models such as autoencoders. Moreover, while theoretically appealing, it is unclear to what extent is enforcing isometry necessary for a given design analysis. This paper answers these questions by constructing an isometric embedding via an isometric autoencoder, which we employ to analyze an inverse airfoil design problem. Specifically, the paper describes how to train an isometric autoencoder and demonstrates its usefulness compared to non-isometric autoencoders on the UIUC airfoil dataset. Our ablation study illustrates that enforcing isometry is necessary for accurately discovering clusters through the latent space. We also show how isometric autoencoders can uncover pathologies in typical gradient-based shape optimization solvers through an analysis on the SU2-optimized airfoil dataset, wherein we find an over-reliance of the gradient solver on the angle of attack. Overall, this paper motivates the use of isometry constraints in neural embedding models, particularly in cases where researchers or designers intend to use distance-based analysis measures to analyze designs within the latent space. While this work focuses on airfoil design as an illustrative example, it applies to any domain where analyzing isometric design or data embeddings would be useful.more » « less
-
Abstract Many natural real-valued functions of closed curves are known to extend continuously to the larger space of geodesic currents. For instance, the extension of length with respect to a fixed hyperbolic metric was a motivating example for the development of geodesic currents. We give a simple criterion on a curve function that guarantees a continuous extension to geodesic currents. The main condition of our criterion is the smoothing property, which has played a role in the study of systoles of translation lengths for Anosov representations. It is easy to see that our criterion is satisfied for almost all known examples of continuous functions on geodesic currents, such as nonpositively curved lengths or stable lengths for surface groups, while also applying to new examples like extremal length. We use this extension to obtain a new curve counting result for extremal length.more » « less