skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Invited paper: An Efficient Energy Management Solution for Renewable Energy Based IoT Devices
Multi-sensor IoT devices enable the monitoring of different phenomena using a single device. Often deployed over large areas, these devices have to depend on batteries and renewable energy sources for power. Therefore, efficient energy management solutions that maximize device lifetime and information utility are important. We present SEMA, a smart energy management solution for IoT applications that uses a Model Predictive Control (MPC) approach to optimize IoT energy use and maximize information utility by dynamically determining task values to be used by the IoT device’s sensors. Our solution uses the current device battery state, predicted available solar energy over the short-term, and task energy and utility models to meet the device energy goals while providing sufficient monitoring data to the IoT applications. To avoid the need for executing the MPC optimization at a centralized sink (from which the task values are downloaded to the SEMA devices), we propose SEMA-Approximation (SEMA-A), which uses an efficient MPC Approximation that is simple enough to be run on the IoT device itself. SEMA-A decomposes the MPC optimization problem into two levels: an energy allocation problem across the time epochs, and task-dependent sensor scheduling problem, and finds efficient algorithms for solving both problems. Experimental results show that SEMA is able to adapt the task values based on the available energy, and that SEMA-A closely approximates SEMA in sensing performance.  more » « less
Award ID(s):
1818971
PAR ID:
10481177
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ICDCN '23: Proceedings of the 24th International Conference on Distributed Computing and Networking
ISBN:
9781450397964
Page Range / eLocation ID:
20 to 27
Format(s):
Medium: X
Location:
Kharagpur India
Sponsoring Org:
National Science Foundation
More Like this
  1. Multi-sensor IoT devices can gather different types of data by executing different sensing activities or tasks. Therefore, IoT applications are also becoming more complex in order to process multiple data types and provide a targeted response to the monitored phenomena. However, IoT devices which are usually resource-constrained still face energy challenges since using each of these sensors has an energy cost. Therefore, energy-efficient solutions are needed to extend the device lifetime while balancing the sensing data requirements of the IoT application. Cooperative monitoring is one approach for managing energy and involves reducing the duplication of sensing tasks between neighboring IoT devices. Setting up cooperative monitoring is a scheduling problem and is challenging in a distributed environment with resource-constrained IoT devices. In this work, we present our Distributed Token and Tier-based task Scheduler (DTTS) for a multi-sensor IoT network. Our algorithm divides the monitoring period (5 min epochs) into a set of non-overlapping intervals called tiers and determines the start deadlines for the task at each IoT device. Then to minimize temporal sensing overlap, DTTS distributes task executions throughout the epoch and uses tokens to share minimal information between IoT devices. Tasks with earlier start deadlines are scheduled in earlier tiers while tasks with later start deadlines are scheduled in later tiers. Evaluating our algorithm against a simple round-robin scheduler shows that the DTTS algorithm always schedules tasks before their start deadline expires. 
    more » « less
  2. IoT devices used in various applications, such as monitoring agricultural soil moisture, or urban air quality assessment, are typically battery-operated and energy-constrained. We develop a lightweight and distributed cooperative sensing scheme that provides energy-efficient sensing of an area by reducing spatio-temporal overlaps in the coverage using a multi-sensor IoT network. Our “Sensing Together” solution includes two algorithms: Distributed Task Adaptation (DTA) and Distributed Block Scheduler (DBS), which coordinate the sensing operations of the IoT network through information shared using a distributed “token passing” protocol. DTA adapts the sensing rates from their “raw” values (optimized for each IoT device independently) to minimize spatial redundancy in coverage, while ensuring that a desired coverage threshold is met at all points in the covered area. DBS then schedules task execution times across all IoT devices in a distributed manner to minimize temporal overlap. On-device evaluation shows a small token size and execution times of less than 0.6s on average while simulations show average energy savings of 5% per IoT device under various weather conditions. Moreover, when devices had more significant coverage overlaps, energy savings exceeded 30% thanks to cooperative sensing. In simulations of larger networks, energy savings range on average between 3.34% and 38.53%, depending on weather conditions. Our solutions consistently demonstrate near-optimal performance under various scenarios, showcasing their capability to efficiently reduce temporal overlap during sensing task scheduling. 
    more » « less
  3. Wearable internet of things (IoT) devices are becoming popular due to their small form factor and low cost. Potential applications include human health and activity monitoring by embedding sensors such as accelerometer, gyroscope, and heart rate sensor. However, these devices have severely limited battery capacity, which requires frequent recharging. Harvesting ambient energy and optimal energy allocation can make wearable IoT devices practical by eliminating the charging requirement. This paper presents a near-optimal runtime energy management technique by considering the harvested energy. The proposed solution maximizes the performance of the wearable device under minimum energy constraints. We show that the results of the proposed algorithm are, on average, within 3% of the optimal solution computed offline. 
    more » « less
  4. Small form factor and low-cost wearable devices enable a variety of applications including gesture recognition, health monitoring, and activity tracking. Energy harvesting and optimal energy management are critical for the adoption of these devices, since they are severely constrained by battery capacity. This paper considers optimal gesture recognition using self-powered devices. We propose an approach to maximize the number of gestures that can be recognized under energy budget and accuracy constraints. We construct a computationally efficient optimization algorithm with the help of analytical models derived using the energy consumption breakdown of a wearable device. Our empirical evaluations demonstrate up to 2.4 x increase in the number of recognized gestures compared to a manually optimized solution. 
    more » « less
  5. Advances in low-power electronics and machine learning techniques lead to many novel wearable IoT devices. These devices have limited battery capacity and computational power. Thus, energy harvesting from ambient sources is a promising solution to power these low-energy wearable devices. They need to manage the harvested energy optimally to achieve energy-neutral operation, which eliminates recharging requirements. Optimal energy management is a challenging task due to the dynamic nature of the harvested energy and the battery energy constraints of the target device. To address this challenge, we present a reinforcement learning-based energy management framework, tinyMAN, for resource-constrained wearable IoT devices. The framework maximizes the utilization of the target device under dynamic energy harvesting patterns and battery constraints. Moreover, tinyMAN does not rely on forecasts of the harvested energy which makes it a prediction-free approach. We deployed tinyMAN on a wearable device prototype using TensorFlow Lite for Micro thanks to its small memory footprint of less than 100 KB. Our evaluations show that tinyMAN achieves less than 2.36 ms and 27.75 μJ while maintaining up to 45% higher utility compared to prior approaches. 
    more » « less