skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy-Efficient Distributed Task Scheduling for Multi-Sensor IoT Networks
Multi-sensor IoT devices can gather different types of data by executing different sensing activities or tasks. Therefore, IoT applications are also becoming more complex in order to process multiple data types and provide a targeted response to the monitored phenomena. However, IoT devices which are usually resource-constrained still face energy challenges since using each of these sensors has an energy cost. Therefore, energy-efficient solutions are needed to extend the device lifetime while balancing the sensing data requirements of the IoT application. Cooperative monitoring is one approach for managing energy and involves reducing the duplication of sensing tasks between neighboring IoT devices. Setting up cooperative monitoring is a scheduling problem and is challenging in a distributed environment with resource-constrained IoT devices. In this work, we present our Distributed Token and Tier-based task Scheduler (DTTS) for a multi-sensor IoT network. Our algorithm divides the monitoring period (5 min epochs) into a set of non-overlapping intervals called tiers and determines the start deadlines for the task at each IoT device. Then to minimize temporal sensing overlap, DTTS distributes task executions throughout the epoch and uses tokens to share minimal information between IoT devices. Tasks with earlier start deadlines are scheduled in earlier tiers while tasks with later start deadlines are scheduled in later tiers. Evaluating our algorithm against a simple round-robin scheduler shows that the DTTS algorithm always schedules tasks before their start deadline expires.  more » « less
Award ID(s):
1818971
PAR ID:
10481178
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Network
Volume:
37
Issue:
2
ISSN:
0890-8044
Page Range / eLocation ID:
318 to 324
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. IoT devices used in various applications, such as monitoring agricultural soil moisture, or urban air quality assessment, are typically battery-operated and energy-constrained. We develop a lightweight and distributed cooperative sensing scheme that provides energy-efficient sensing of an area by reducing spatio-temporal overlaps in the coverage using a multi-sensor IoT network. Our “Sensing Together” solution includes two algorithms: Distributed Task Adaptation (DTA) and Distributed Block Scheduler (DBS), which coordinate the sensing operations of the IoT network through information shared using a distributed “token passing” protocol. DTA adapts the sensing rates from their “raw” values (optimized for each IoT device independently) to minimize spatial redundancy in coverage, while ensuring that a desired coverage threshold is met at all points in the covered area. DBS then schedules task execution times across all IoT devices in a distributed manner to minimize temporal overlap. On-device evaluation shows a small token size and execution times of less than 0.6s on average while simulations show average energy savings of 5% per IoT device under various weather conditions. Moreover, when devices had more significant coverage overlaps, energy savings exceeded 30% thanks to cooperative sensing. In simulations of larger networks, energy savings range on average between 3.34% and 38.53%, depending on weather conditions. Our solutions consistently demonstrate near-optimal performance under various scenarios, showcasing their capability to efficiently reduce temporal overlap during sensing task scheduling. 
    more » « less
  2. Recent advances in Internet of Things (IoT) technologies have sparked significant interest toward developing learning-based sensing applications on embedded edge devices. These efforts, however, are being challenged by the complexities of adapting to unforeseen conditions in an open-world environment, mainly due to the intensive computational and energy demands exceeding the capabilities of edge devices. In this article, we propose OpenSense, an open-world time-series sensing framework for making inferences from time-series sensor data and achieving incremental learning on an embedded edge device with limited resources. The proposed framework is able to achieve two essential tasks, inference and incremental learning, eliminating the necessity for powerful cloud servers. In addition, to secure enough time for incremental learning and reduce energy consumption, we need to schedule sensing activities without missing any events in the environment. Therefore, we propose two dynamic sensor scheduling techniques: 1) a class-level period assignment scheduler that finds an appropriate sensing period for each inferred class and 2) a Q-learning-based scheduler that dynamically determines the sensing interval for each classification moment by learning the patterns of event classes. With this framework, we discuss the design choices made to ensure satisfactory learning performance and efficient resource usage. Experimental results demonstrate the ability of the system to incrementally adapt to unforeseen conditions and to efficiently schedule to run on a resource-constrained device. 
    more » « less
  3. Multi-sensor IoT devices enable the monitoring of different phenomena using a single device. Often deployed over large areas, these devices have to depend on batteries and renewable energy sources for power. Therefore, efficient energy management solutions that maximize device lifetime and information utility are important. We present SEMA, a smart energy management solution for IoT applications that uses a Model Predictive Control (MPC) approach to optimize IoT energy use and maximize information utility by dynamically determining task values to be used by the IoT device’s sensors. Our solution uses the current device battery state, predicted available solar energy over the short-term, and task energy and utility models to meet the device energy goals while providing sufficient monitoring data to the IoT applications. To avoid the need for executing the MPC optimization at a centralized sink (from which the task values are downloaded to the SEMA devices), we propose SEMA-Approximation (SEMA-A), which uses an efficient MPC Approximation that is simple enough to be run on the IoT device itself. SEMA-A decomposes the MPC optimization problem into two levels: an energy allocation problem across the time epochs, and task-dependent sensor scheduling problem, and finds efficient algorithms for solving both problems. Experimental results show that SEMA is able to adapt the task values based on the available energy, and that SEMA-A closely approximates SEMA in sensing performance. 
    more » « less
  4. Integrating multimodal data such as RGB and LiDAR from multiple views significantly increases computational and communication demands, which can be challenging for resource-constrained autonomous agents while meeting the time-critical deadlines required for various mission-critical applications. To address this challenge, we propose CoOpTex, a collaborative task execution framework designed for cooperative perception in distributed autonomous systems (DAS). CoOpTex contribution is twofold: (a) CoOpTex fuses multiview RGB images to create a panoramic camera view for 2D object detection and utilizes 360° LiDAR for 3D object detection, improving accuracy with a lightweight Graph Neural Network (GNN) that integrates object coordinates from both perspectives, (b) To optimize task execution and meet the deadline, CoOpTex dynamically offloads computationally intensive image stitching tasks to auxiliary devices when available and adjusts frame capture rates for RGB frames based on device mobility and processing capabilities. We implement CoOpTex in real-time on static and mobile heterogeneous autonomous agents, which helps to significantly reduce deadline violations by 100% while improving frame rates for 2D detection by 2.2 times in stationary and 2 times in mobile conditions, demonstrating its effectiveness in enabling real-time cooperative perception. 
    more » « less
  5. We propose and implement Directory-Based Access Control (DBAC), a flexible and systematic access control approach for geographically distributed multi-administration IoT systems. DBAC designs and relies on a particular module, IoT directory, to store device metadata, manage federated identities, and assist with cross-domain authorization. The directory service decouples IoT access into two phases: discover device information from directories and operate devices through discovered interfaces. DBAC extends attribute-based authorization and retrieves diverse attributes of users, devices, and environments from multi-faceted sources via standard methods, while user privacy is protected. To support resource-constrained devices, DBAC assigns a capability token to each authorized user, and devices only validate tokens to process a request. 
    more » « less