To promote the resilience and sustainability of coastal social-ecological systems (SES), it is necessary to implement adaptive and participatory management schemes. Successful examples of adaptation to the rapid change in coastal SES exist, but the question of whether these cases may be scalable to other regions and contexts remains. To this end, the present study aimed to identify how successful management strategies implemented in a fishing cooperative in Baja California, Mexico, can be adapted to other coastal SES. In particular, this study aimed to understand whether adaptive co-management of Isla Natividad (IN) could be replicated in Isla Todos Santos (ITS), a biophysically similar coastal SES to IN but with different results with regard to fisheries management. We found that the resource systems and resources in both SESs were similar. However, there were substantial differences with regard to governance and resource users. In Isla Natividad, the level of organization orchestrated by the resource users has contributed to establishing rules and sanctions that have supported the sustainable use of fishery resources. On the contrary, in ITS, the number of resource users and their socioeconomic attributes have impeded the establishment of effective rules or sanctions. The results of this study suggest that the ITS governance system needs to be improved in order to adapt some of the IN management strategies to increase its adaptive capacity. To promote successful adaptive management, it is necessary to develop context-specific adaptive pathways that contribute to greater resilience in the SESs of this region and in other regions that face similar conditions. 
                        more » 
                        « less   
                    
                            
                            Diverse pathways for climate resilience in marine fishery systems
                        
                    
    
            Abstract Both the ecological and social dimensions of fisheries are being affected by climate change. As a result, policymakers, managers, scientists and fishing communities are seeking guidance on how to holistically build resilience to climate change. Numerous studies have highlighted key attributes of resilience in fisheries, yet concrete examples that explicitly link these attributes to social‐ecological outcomes are lacking. To better understand climate resilience, we assembled 18 case studies spanning ecological, socio‐economic, governance and geographic contexts. Using a novel framework for evaluating 38 resilience attributes, the case studies were systematically assessed to understand how attributes enable or inhibit resilience to a given climate stressor. We found population abundance, learning capacity, and responsive governance were the most important attributes for conferring resilience, with ecosystem connectivity, place attachment, and accountable governance scoring the strongest across the climate‐resilient fisheries. We used these responses to develop an attribute typology that describes robust sources of resilience, actionable priority attributes and attributes that are case specific or require research. We identified five fishery archetypes to guide stakeholders as they set long‐term goals and prioritize actions to improve resilience. Lastly, we found evidence for two pathways to resilience: (1) building ecological assets and strengthening communities, which we observed in rural and small‐scale fisheries, and (2) building economic assets and improving effective governance, which was demonstrated in urban and wealthy fisheries. Our synthesis presents a novel framework that can be directly applied to identify approaches, pathways and actionable levers for improving climate resilience in fishery systems. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1826668
- PAR ID:
- 10481266
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Fish and Fisheries
- Volume:
- 25
- Issue:
- 1
- ISSN:
- 1467-2960
- Page Range / eLocation ID:
- 38 to 59
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Coastal ecosystems and human communities are threatened worldwide by climate change, and shocks from social, market and political change. There is an urgent global need to promote resilient food production and livelihoods in the face of these shocks. Small-scale fisheries (SSF) in rural settings can be particularly vulnerable as they frequently lack the resources, rights and infrastructure to respond to shocks originating outside the focal systems. We examined ecological and social outcomes of environmental extremes in a SSF socio-ecological system (SES) by using long-term oceanographic (between 2010-2019) and ecological (2006-2018) data tracking change in a kelp forest ecosystem of Baja California, Mexico, and concurrent documentation of proactive and reactive actions of a fishing community organized in a cooperative. Results indicate a complex landscape of ‘winners’ and ‘losers’ among species and fisheries exposed to unprecedented environmental extremes, including marine heat waves and prolonged hypoxia, and a suite of adaptive actions by the local fishing cooperative, and others in the region, that have helped confront these rapid and drastic changes. Cooperatives have established voluntary marine reserves to promote recovery of affected populations and have invested in diversification of activities enabled by access rights, collective decision-making, and participatory science programs. Results indicate that local actions can support social and ecological resilience in the face of shocks, and that enabling locally-driven adaptation pathways is critical to resilience. This case study highlights the crucial importance of strengthening and supporting rights, governance, capacity, flexibility, learning, and agency for coastal communities to respond to change and sustain their livelihoods and ecosystems in the long run.more » « less
- 
            The emergence of ecosystem-based fisheries management (EBFM) has broadened the policy scope of fisheries management by accounting for the biological and ecological connectivity of fisheries. Less attention, however, has been given to the economic connectivity of fisheries. If fishers consider multiple fisheries when deciding where, when, and how much to fish, then management changes in one fishery can generate spillover impacts in other fisheries. Catch-share programs are a popular fisheries management framework that may be particularly prone to generating spillovers given that they typically change fishers’ incentives and their subsequent actions. We use data from Alaska fisheries to examine spillovers from each of the main catch-share programs in Alaska. We evaluate changes in participation—a traditional indicator in fisheries economics—in both the catch-share and non–catch-share fisheries. Using network analysis, we also investigate whether catch-share programs change the economic connectivity of fisheries, which can have implications for the socioeconomic resilience and robustness of the ecosystem, and empirically identify the set of fisheries impacted by each Alaska catch-share program. We find that cross-fishery participation spillovers and changes in economic connectivity coincide with some, but not all, catch-share programs. Our findings suggest that economic connectivity and the potential for cross-fishery spillovers deserve serious consideration, especially when designing and evaluating EBFM policies.more » « less
- 
            Abstract Recreational fisheries are culturally and economically important around the world. Recent research emphasizes that understanding and managing these systems requires a social–ecological perspective. We systematically reviewed quantitative social–ecological models of marine and freshwater recreational fisheries to summarize their conceptualization of social, ecological, and social–ecological dynamics and identify research frontiers. From a candidate set of 626 studies published between 1975 and 2018, 49 met criteria for inclusion in our review. These studies, though diverse in terms of focal species and processes considered, were geographically limited to a few locations and ignored large regions of the globe where recreational fishing is important. There were also important gaps in the social and ecological processes that were included in published models. Reflecting on these patterns in the context of previous conceptual frameworks, we define five key frontiers for future work: 1) exploring the implications of social and behavioural processes like heuristics, social norms, and information sharing for angler decisions and fishery dynamics; 2) modelling governance with more realistic complexity; 3) incorporating ideas from resilience thinking and complex adaptive systems, including slow variables, destabilizing feedbacks, surprises and diversity; 4) considering key ideas in fisheries systems, including spatial and temporal effort dynamics, catch hyperstability, and stocking; and 5) thinking synthetically about the models that we use to describe social–ecological dynamics in recreational fisheries, via explicit comparisons and formal integration with data. Exploration of these frontiers, while remembering the distinction between model complexity and model usefulness, will improve our ability to understand and sustain recreational fisheries.more » « less
- 
            Abstract The 2010Deepwater Horizon(DwH) disaster challenged the integrity of the Gulf of Mexico (GOM) large‐marine ecosystem at unprecedented scales, prompting concerns of devastating injury for GOM fisheries in the post‐spill decade. Following the catastrophe, projected economic losses for regional commercial, recreational, and mariculture sectors for the decade after oiling were US$3.7–8.7 billion overall, owing to the vulnerability of economically prized, primarily nearshore taxa that support fishing communities. State and federal fisheries data during 2000–2017 indicated that GOM fishery sectors appeared to serve as remarkable anchors of resilience following the largest accidental marine oil spill in human history. Evidence of post‐disaster impacts on fisheries economies was negligible. Rather, GOM commercial sales during 2010–2017 were US$0.8–1.5 billion above forecasts derived using pre‐spill (2000–2009) trajectories, while pre‐ and post‐spill recreational fishery trends did not differ appreciably. No post‐spill shifts in target species or effort distribution across states were apparent to explain these findings. Unraveling the mechanisms for this unforeseen stability represents an important avenue for understanding the vulnerability or resilience of human–natural systems to future disturbances. FollowingDwH, the causes for fishery responses are likely multifaceted and complex (including exogenous economic forces that typically affect fisheries‐dependent data), but appear partially explained by the relative ecological stability of coastal fishery assemblages despite widespread oiling, which has been corroborated by multiple fishery‐independent surveys across the northern GOM. Additionally, we hypothesize that damage payments to fishermen led to acquisition or retooling of commercial fisheries infrastructure, and subsequent rises in harvest effort. Combined, these social–ecological dynamics likely aided recovery of stressed coastal GOM communities in the years afterDwH, although increased fishing pressure in the post‐spill era may have consequences for future GOM ecosystem structure, function, and resilience.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    