skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of Narrow Bipolar Events Using Mode Decomposition Methods
Abstract Multi‐resolution analysis methods can reveal the underlying physical dynamics of nonstationary signals, such as those from lightning. In this paper we demonstrate the application of two multi‐resolution analysis methods: Ensemble Empirical Mode Decomposition (EEMD) and Variational Mode Decomposition (VMD) in a comparative way in the analysis of electric field change waveforms from lightning. EEMD and VMD decompose signals into a set of Intrinsic Mode Functions (IMFs). The IMFs can be combined using distance and divergence metrics to obtain noise reduction or to obtain new waveforms that isolate the physical processes of interest while removing irrelevant components of the original signal. We apply the EEMD and VMD methods to the observations of three close Narrow Bipolar Events (NBEs) that were reported by Rison et al. (2016,https://doi.org/10.1038/ncomms10721). The ΔE observations reveal the occurrence of complex oscillatory processes after the main NBE sferic. We show that both EEMD and VMD are able to isolate the oscillations from the main NBE, with VMD being more effective of the two methods since it requires the least user supervision. The oscillations are found to begin at the end of the NBEs' downward fast positive breakdown, and appear to be produced by a half‐wavelength standing wave within a weakly‐conducting resonant ionization cavity left behind in the wake of the streamer‐based NBE event. Additional analysis shows that one of the NBEs was likely initiated by an energetic cosmic ray shower, and also corrects a misinterpretation in the literature that fast breakdown is an artifact of NBE‐like events in interferometer observations.  more » « less
Award ID(s):
2214044 2046043
PAR ID:
10481421
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
128
Issue:
21
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Fast breakdown (FB), a breakdown process composed of systems of high‐velocity streamers, has been observed to precede lightning leader formation and play a critical role in lightning initiation. Vigorous FB events are responsible for the most powerful natural radio emissions on Earth, known as narrow bipolar events (NBEs). In this paper, an improved version of the Griffiths and Phelps (1976,https://doi.org/10.1029/jc081i021p03671) model of streamer breakdown is used alongside supervised machine learning techniques to probe the required electric fields and potentials inside thunderstorms to produce FB and NBEs. Our results show that the electrostatic conditions needed to produceFB observed in New Mexico at 9 km altitude andFB in Florida at 14 km altitude are about the same, each requiring about 100 MV potential difference to propagate 500 m. Additionally, the model illustrates how electric field enhancement ahead of propagating FB can initiate rebounding FB of the opposite polarity. 
    more » « less
  2. The application of empirical mode decomposition (EMD) in the analysis and processing of lightning electric field waveforms acquired by the low-frequency e-field detection array (LFEDA) in China has significantly improved the capabilities of the low-frequency/very-low-frequency (LF/VLF) time-of-arrival technique for studying the lightning discharge processes. However, the inherent mode mixing and the endpoint effect of EMD lead to certain problems, such as an inadequate noise reduction capability, the incorrect matching of multistation waveforms, and the inaccurate extraction of pulse information, which limit the further development of the LFEDA's positioning ability. To solve these problems, the advanced ensemble EMD (EEMD) technique is introduced into the analysis of LF/VLF lightning measurements, and a double-sided bidirectional mirror (DBM) extension method is proposed to overcome the endpoint effect of EMD. EEMD can effectively suppress mode mixing, and the DBM extension method proposed in this article can effectively suppress the endpoint effect, thus greatly improving the accuracy of a simulated signal after a 25-500-kHz bandpass filter. The resulting DBM_EEMD algorithm can be used in the LFEDA system to process and analyze the detected electric field signals to improve the system's lightning location capabilities, especially in terms of accurate extraction and location of weak signals from lightning discharges. In this article, a 3-D image of artificially triggered lightning obtained from an LF/VLF location system is reported for the first time, and methods for further improving the location capabilities of the LF/VLF lightning detection systems are discussed. 
    more » « less
  3. Abstract We address in situ serpentinization and mineral carbonation processes in oceanic lithosphere using integrated field magnetic measurements, rock magnetic analyses, superconducting quantum interference device (SQUID) microscopy, microtextural observations, and energy dispersive spectroscopy phase mapping. A representative suite of ultramafic rock samples were collected, within the Atlin ophiolite, along a 100‐m long transect across a continuous outcrop of mantle harzburgite with several alteration fronts: serpentinite, soapstone (magnesite + talc), and listvenite (magnesite + quartz). Strong correlations between changes in magnetic signal strengths and amount of alteration are shown with distinctive contrasts between serpentinite, transitional soapstone, and listvenite that are linked to the formation and breakdown of magnetite. While previous observations of the Linnajavri ultramafic complex indicated that the breakdown of magnetite occurred during listvenite formation from the precursor soapstone (Tominaga et al., 2017,https://doi.org/10.1038/s41467-017-01610-4), results from our study suggest that magnetite destabilization already occurred during the replacement of serpentinite by soapstone (i.e., at lower fluid CO2concentrations). This difference is attributed to fracture‐controlled flow of sulfur‐bearing alteration fluid at Atlin, causing reductive magnetite dissolution in thin soapstone zones separating serpentinite from sulfide‐mineralized listvenite. We argue that magnetite growth or breakdown in soapstone provides insight into the mode of fluid flow and the composition, which control the scale and extent of carbonation. This conclusion enables us to use magnetometry as a viable tool for monitoring the reaction progress from serpentinite to carbonate‐bearing assemblages in space and time with a caution that the three‐dimensionality of magnetic sources impacts the scalability of measurements. 
    more » « less
  4. Abstract This paper reports a study to understand the radio spectrum of thunderstorm narrow bipolar events (NBEs) or compact intracloud discharges, which are powerful sources of high‐frequency (HF) and very high frequency (VHF) electromagnetic radiation. The radio spectra from 10 kHz to about 100 MHz are obtained for three NBEs, including one caused by fast positive breakdown and two by fast negative breakdown. The results indicate that the two polarities of fast breakdown have similar spectra, with a relatively flat spectrum in the HF and VHF band. The ratio of energy spectral densities in the very low frequency and HF bands is (0.9–5) × 105. We develop a statistical modeling approach to investigate if a system of streamers can explain the main features of fast breakdown. Assuming that the current moment peak and charge moment change of individual streamers vary in the ranges of 5–10 A‐m and 5–20 μC‐m, respectively, the modeling results indicate that a system of 107–108streamers can reproduce the current moment, charge transfer, and radio spectrum of fast breakdown. The rapid current variation on a time scale of nanoseconds required for fast breakdown to produce strong HF/VHF emissions is provided by exponentially accelerating and expanding streamers. Our study therefore supports the hypothesis that fast breakdown is a system of streamers. Finally, suggestions are given regarding future streamer simulations and NBE measurements in order to further develop our understanding of NBEs and lightning initiation. 
    more » « less
  5. Abstract Recent field studies have shown that the presence of ash in the atmosphere can produce measurable attenuation of Global Positioning System (GPS) signals (Aranzulla et al., 2013,https://doi.org/10.1007/s10291-012-0294-4; Larson, 2013,https://doi.org/10.1002/grl.50556; Larson et al., 2017,https://doi.org/10.1016/j.jvolgeores.2017.04.005). The ability to detect plumes using GPS is appealing because many active volcanoes are already instrumented with high‐quality receivers. However, analyses using a Ralyeigh approximation have shown that the large attenuations cannot be explained by the scattering and absorption associated with ash or hydrometeors alone. Here, we show that the extinction of GPS signals, which fall into the L‐band of the electromagnetic spectrum, may be exacerbated significantly by excess surface charge on pyroclasts. Indeed, volcanic eruptions are often accompanied by a range of electrostatic processes, leading, in some cases, to spectacular lightning storms. We use a modified Mie scattering model to demonstrate that electrostatic effects can increase the extinction of L‐band radiation by up to an order of magnitude, producing attenuations consistent with those observed in the field. Thus, future work involving GPS as a tool to remotely probe plumes must take into account the electrification of ash in radiative transfer models. Additionally, we propose that the sensitivity of GPS to particle charging may catalyze the development of new techniques to explore electrostatic processes in plumes, especially if GPS measurements are complemented with millimeter‐wave RADAR measurements. 
    more » « less