Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Narrow bipolar events (NBEs) are impulsive and powerful intracloud discharges. Recent observations indicate that some NBEs exhibit a slanted orientation rather than strictly vertical. This paper investigates the effect of the slanted NBEs using a newly developed rebounding‐wave model. The modeling results are validated against the full‐wave Finite‐ Difference Time‐Domain method and compared with measurements for both vertical and slanted NBE cases. It is found that the inclination of the NBEs affects both the waveforms and amplitudes of the electrostatic, induction and radiation components of the electric fields at close distances (≤10 km). However, it primarily influences the amplitudes of the fields for distances beyond 50 km, where the radiation component dominates, resulting in changes of ≥30% when the slant angle exceeds 30°. The slanted rebounding‐wave model improves the agreement with respect to a purely vertical channel and can be extended to any discharge geometry at arbitrary observation distances.more » « less
- 
            Abstract Terrestrial Gamma‐ray Flashes (TGFs) are ten‐to‐hundreds of microsecond bursts of gamma‐rays produced when electrons in strong electric fields in thunderclouds are accelerated to relativistic energies. Space instruments have observed TGFs with source photon brightness down to ∼1017–1016. Based on space and aircraft observations, TGFs have been considered rare phenomena produced in association with very few lightning discharges. Space observations associated with lightning ground observations in the radio band have indicated that there exists a population of dimmer TGFs. Here we show observations of TGFs from aircraft altitude that were not detected by a space instrument viewing the same area. The TGFs were found through Monte Carlo modeling to be associated with 1015–1012photons at source, which is several orders of magnitude below what can be seen from space. Our results suggest that there exists a significant population of TGFs that are too weak to be observed from space.more » « less
- 
            Abstract On 11 September 2021, two small thunderstorms developed over the Telescope Array Surface Detector (TASD) that produced an unprecedented number of six downward terrestrial gamma ray flashes (TGFs) within one‐hour timeframe. The TGFs occurred during the initial stage of negative cloud‐to‐ground flashes whose return strokes had increasingly large peak currents up to 223 kA, 147 GeV energy deposit in up to 25 1.2 km‐spaced surface detectors, and intermittent bursts of gamma‐rays with total durations up to 717 s. The analyses are based on observations recorded by the TASD network, complemented by data from a 3D lightning mapping array, broadband VHF interferometer, fast electric field change sensor, high‐speed video camera, and the National Lightning Detection Network. The TGFs of the final two flashes had gamma fluences of and 8, logarithmically bridging the gap between previous TASD and satellite‐based detections. The observations further emphasize the similarity between upward and downward TGF varieties, suggesting a common mechanism for their production.more » « lessFree, publicly-accessible full text available December 28, 2025
- 
            Abstract Optical emissions associated with Terrestrial Gamma ray Flashes (TGFs) have recently become important subjects in space‐based and ground‐based observations as they can help us understand how TGFs are produced during thunderstorms. In this paper, we present the first time‐resolved leader spectra of the optical component associated with a downward TGF. The TGF was observed by the Telescope Array Surface Detector (TASD) simultaneously with other lightning detectors, including a Lightning Mapping Array (LMA), an INTerFerometer (INTF), a Fast Antenna (FA), and a spectroscopic system. The spectroscopic system recorded leader spectra at 29,900 frames per second (33.44 s time resolution), covering a spectral range from 400 to 900 nm, with 2.1 nm per pixel. The recordings of the leader spectra began 11.7 ms before the kA return stroke and at a height of 2.37 km above the ground. These spectra reveal that optical emissions of singly ionized nitrogen and oxygen occur between 167 s before and 267 s after the TGF detection, while optical emissions of neutrals (H I, 656 nm; N I, 744 nm, and O I, 777 nm) occur right at the moment of the detection. The time‐dependent spectra reveal differences in the optical emissions of lightning leaders with and without downward TGFs.more » « lessFree, publicly-accessible full text available December 28, 2025
- 
            Abstract Lightning channel morphology depends on the thunderstorm cloud charge structure, which in turn is influenced by the thunderstorm dynamics. In this paper, based on three‐dimensional radiation source localization data from the Lightning Mapping Array and radar‐based data, our analysis shows that the overall morphology and detailed morphology of the lightning channel correspond to different eddy dissipation rate (EDR) characteristics. Lightning with complex channel morphology occurs in regions with large EDRs. In single lightning events, channels that extend directly within a certain height range without significant bifurcation and turning tend to propagate in the direction of decreasing EDRs, while channel bifurcations and turns usually occur in regions with large radial velocity gradients and large EDRs. This study shows the relationship between channel morphology and thunderstorm dynamics and provides a new method for the direct application of channel‐level localization data to understand thunderstorm dynamics characteristics.more » « less
- 
            Abstract Observations of a regular pulse burst (RPB) at the end of a K‐event are analyzed utilizing a simple geometric model and particle swarm optimization (PSO) to estimate the currents and propagation speeds of successive pulses of the RPB. The results show that the current of successive pulses is strongly overlapped and, for typical speeds of continuously propagating K‐events, are unphysically large (88 kA), exceeding the currents of most strokes to ground. By default, the unphysical nature of the result, coupled with very high frequency interferometer observations of an RPB in Florida, shows that the propagation speed of the pulses is significantly faster than expected, namely ∼0.6–1.8 × 108 m/s. This reduces the inferred current from 88 kA down to 6–18 kA, typical of intracloud events. The fast propagation speed of the stepping is explained by successive pulses retracing much of the path of the preceding pulses due to the successive pulses being strongly overlapped.more » « less
- 
            Abstract The Guangdong Lightning Mapping Array (GDLMA), as the first LMA in China, was deployed in Guangzhou, Guangdong Province, China, in November 2018 by the Chinese Academy of Meteorological Sciences and New Mexico Institute of Mining and Technology. An evaluation was conducted using Monte Carlo and an aircraft track. The average timing uncertainty of GDLMA is 35 ns based on the distributions of reduced chi‐square values. Based on the aircraft track, the average horizontal error is 13 m and the average vertical error is 41 m at an altitude of 4–5 km over the network, consistent with the Monte Carlo results. Location errors outside the network exhibit noticeable directionality. The ability to characterize lightning channels varies with different location errors. In locations that are far from the network center, only the basic structure of lightning flash can be presented, while closer to the network, the flash channel structure can be mapped well. Compared with Low‐to‐Mid Frequency E‐field Detection Array (MLFEDA), they were generally similar in overall structure, and some lightning flash characteristics such as flash duration and coverage area exhibited consistency. However, GDLMA demonstrated better flash channel structure characterization capability, while MLFEDA performed better in processes such as leader/return strokes. In addition, based on the comparison of spatial positions of one‐on‐one discharge events, we found that very high frequency sources were more located ahead of low frequency sources in the direction of lightning channel development.more » « less
- 
            Abstract The dissonant development of positive and negative lightning leaders is a central question in atmospheric electricity. It is also the likely root cause of other reported asymmetries between positive and negative lightning flashes, including the ones regarding: stroke multiplicity, recoil activity, leader velocities, and emission of energetic radiation. In an effort to contrast lightning leaders of different polarities, we highlight the staggering differences between two rocket‐triggered lightning flashes. The flash beginning with upward positive leaders exhibits an initial continuous current stage followed by multiple sequences of dart leaders and return strokes. On the other, in its opposite‐polarity counterpart, the upward development of negative leaders is by itself the entire flash. As a result, the flash with negative leaders is faster, briefer, transfers less charge to the ground, has lower currents, and smaller spatial extent. We conclude by presenting a discussion on the three fundamental leader propagation modes.more » « less
- 
            Abstract Multi‐resolution analysis methods can reveal the underlying physical dynamics of nonstationary signals, such as those from lightning. In this paper we demonstrate the application of two multi‐resolution analysis methods: Ensemble Empirical Mode Decomposition (EEMD) and Variational Mode Decomposition (VMD) in a comparative way in the analysis of electric field change waveforms from lightning. EEMD and VMD decompose signals into a set of Intrinsic Mode Functions (IMFs). The IMFs can be combined using distance and divergence metrics to obtain noise reduction or to obtain new waveforms that isolate the physical processes of interest while removing irrelevant components of the original signal. We apply the EEMD and VMD methods to the observations of three close Narrow Bipolar Events (NBEs) that were reported by Rison et al. (2016,https://doi.org/10.1038/ncomms10721). The ΔE observations reveal the occurrence of complex oscillatory processes after the main NBE sferic. We show that both EEMD and VMD are able to isolate the oscillations from the main NBE, with VMD being more effective of the two methods since it requires the least user supervision. The oscillations are found to begin at the end of the NBEs' downward fast positive breakdown, and appear to be produced by a half‐wavelength standing wave within a weakly‐conducting resonant ionization cavity left behind in the wake of the streamer‐based NBE event. Additional analysis shows that one of the NBEs was likely initiated by an energetic cosmic ray shower, and also corrects a misinterpretation in the literature that fast breakdown is an artifact of NBE‐like events in interferometer observations.more » « less
- 
            Abstract In this paper, we present the first high‐speed video observation of a cloud‐to‐ground lightning flash and its associated downward‐directed Terrestrial Gamma‐ray Flash (TGF). The optical emission of the event was observed by a high‐speed video camera running at 40,000 frames per second in conjunction with the Telescope Array Surface Detector, Lightning Mapping Array, interferometer, electric‐field fast antenna, and the National Lightning Detection Network. The cloud‐to‐ground flash associated with the observed TGF was formed by a fast downward leader followed by a very intense return stroke peak current of −154 kA. The TGF occurred while the downward leader was below cloud base, and even when it was halfway in its propagation to ground. The suite of gamma‐ray and lightning instruments, timing resolution, and source proximity offer us detailed information and therefore a unique look at the TGF phenomena.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
