skip to main content


Title: Constraints on sub-terrestrial free-floating planets from Subaru microlensing observations
ABSTRACT

The abundance of protoplanetary bodies ejected from their parent star system is presently poorly constrained. With only two existing optical observations of interstellar objects in the 108–1010 kg mass range and a small number of robust microlensing observations of free-floating planets (FFPs) in the 1024–1025 kg mass range, there is a large range of masses for which there are no existing measurements of the unbound population. The three primary microlensing surveys currently searching for FFPs operate at a cadence greater than 15 min, which limits their ability to observe events associated with bodies with a mass much below an Earth mass. We demonstrate that existing high-cadence observations of M31 with the Subaru Hyper Suprime-Cam place constraints on the abundance of unbound objects at sub-terrestrial masses, with peak sensitivity at 10−4 M⊕ for Milky Way lenses and 10−1 M⊕ for lenses in M31. For a fiducial $\frac{dn}{dM}\propto M^{-2}$ mass distribution, we find that the abundance of unbound objects is constrained to $n_\text{unbound} \lt 1.4 \times 10^{7} ~\rm {pc}^{-3}$ for masses within 1 dex of 10−4 M⊕. Additionally, we compute limits on an artificial ‘monochromatic’ distribution of unbound objects and compare to existing literature, demonstrating that the assumed spatial distribution of lenses has very significant consequences for the sensitivity of microlensing surveys. While the observations ultimately do not probe abundances suggested by current models of planetary formation, our limits place direct observational constraints on the unbound population in the sub-terrestrial mass range and motivate new observational strategies for microlensing surveys.

 
more » « less
NSF-PAR ID:
10481471
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
527
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 8921-8930
Size(s):
["p. 8921-8930"]
Sponsoring Org:
National Science Foundation
More Like this
  1. As the Kepler mission has done for hot exoplanets, the ESA Euclid and NASA Roman missions have the potential to create a breakthrough in our understanding of the demographics of cool exoplanets, including unbound, or free-floating, planets (FFPs). Roman will dedicate part of its core survey program to the detection of cool exoplanets via microlensing, while Euclid may undertake a microlensing program as an ancillary science goal. In this study, we demonstrate the complementarity of the two missions and propose two joint surveys to better constrain the mass and distance of microlensing events. We first demonstrate that an early brief Euclid survey (~7 h) of the Roman microlensing fields will allow the measurement of at least 30% of the events’ relative proper motions µ rel and 42% of the lens magnitudes. This survey would place strong constraints on the mass and distance on thousands of microlensing events observed by Roman just after the first year of observation. Then, we study the potential of simultaneous observations by Roman and Euclid to enable the measurement of the microlensing parallax for the shortest microlensing events and, ultimately, obtain a direct measurement of the masses, distances, and transverse motions of FFPs. Using detailed simulations of the joint detection yield we show that within one year Roman-Euclid observations will be at least an order of magnitude more sensitive than current ground-based measurements. The recent tentative detection of an excess of short-duration events by the OGLE survey is consistent with a scenario of up to ten Earth-mass FFPs per Galactic star. For such a scenario a joint Roman-Euclid campaign should detect around 130 FFP events within a year, including 110 with measured parallax that strongly constrain the FFP mass, and around 30 FFP events with direct mass and distance measurements. The ability of the joint survey to completely break the microlens mass-distance-velocity degeneracy for a significant subset of events provides a unique opportunity to verify unambiguously the FFP hypothesis or else place abundance limits for FFPs between Earth and Jupiter masses that are up to two orders of magnitude stronger than provided by ground-based surveys. Finally, we study the capabilities of the joint survey to enhance the detection and characterization of exomoons, and find that it could lead to the detection of the first exomoon. 
    more » « less
  2. Aims. We conducted a project of reinvestigating the 2017–2019 microlensing data collected by high-cadence surveys with the aim of finding planets that were missed due to the deviations of planetary signals from the typical form of short-term anomalies. Methods. The project led us to find three planets, KMT-2017-BLG-2509Lb, OGLE-2017-BLG-1099Lb, and OGLE-2019-BLG-0299Lb. The lensing light curves of the events have a common characteristic: the planetary signals were produced by the crossings of faint source stars over the resonant caustics formed by giant planets located near the Einstein rings of host stars. Results. For all planetary events, the lensing solutions are uniquely determined without any degeneracy. It is estimated that the host masses are in the range of 0.45 ≲ M ∕ M ⊙ ≲ 0.59, which corresponds to early M to late K dwarfs, and thus the host stars are less massive than the Sun. On the other hand, the planets, with masses in the range of 2.1 ≲ M ∕ M J ≲ 6.2, are heavier than the heaviest planet of the Solar System, that is, Jupiter. The planets in all systems lie beyond the snow lines of the hosts, and thus the discovered planetary systems, together with many other microlensing planetary systems, support the idea that massive gas-giant planets are commonplace around low-mass stars. We discuss the role of late-time high-resolution imaging in clarifying resonant-image lenses with very faint sources. 
    more » « less
  3. Abstract

    From the formation mechanisms of stars and compact objects to nuclear physics, modern astronomy frequently leverages surveys to understand populations of objects to answer fundamental questions. The population of dark and isolated compact objects in the Galaxy contains critical information related to many of these topics, but is only practically accessible via gravitational microlensing. However, photometric microlensing observables are degenerate for different types of lenses, and one can seldom classify an event as involving either a compact object or stellar lens on its own. To address this difficulty, we apply a Bayesian framework that treats lens type probabilistically and jointly with a lens population model. This method allows lens population characteristics to be inferred despite intrinsic uncertainty in the lens class of any single event. We investigate this method’s effectiveness on a simulated ground-based photometric survey in the context of characterizing a hypothetical population of primordial black holes (PBHs) with an average mass of 30M. On simulated data, our method outperforms current black hole (BH) lens identification pipelines and characterizes different subpopulations of lenses while jointly constraining the PBH contribution to dark matter to ≈25%. Key to robust inference, our method can marginalize over population model uncertainty. We find the lower mass cutoff for stellar origin BHs, a key observable in understanding the BH mass gap, particularly difficult to infer in our simulations. This work lays the foundation for cutting-edge PBH abundance constraints to be extracted from current photometric microlensing surveys.

     
    more » « less
  4. Abstract

    Uncertainty in the initial–final mass relation (IFMR) has long been a problem in understanding the final stages of massive star evolution. One of the major challenges of constraining the IFMR is the difficulty of measuring the mass of nonluminous remnant objects (i.e., neutron stars and black holes). Gravitational-wave detectors have opened the possibility of finding large numbers of compact objects in other galaxies, but all in merging binary systems. Gravitational lensing experiments using astrometry and photometry are capable of finding compact objects, both isolated and in binaries, in the Milky Way. In this work we improve the Population Synthesis for Compact object Lensing Events (PopSyCLE)microlensing simulation code in order to explore the possibility of constraining the IFMR using the Milky Way microlensing population. We predict that the Roman Space Telescope’s microlensing survey will likely be able to distinguish different IFMRs based on the differences at the long end of the Einstein crossing time distribution and the small end of the microlensing parallax distribution, assuming the small (πE≲ 0.02) microlensing parallaxes characteristic of black hole lenses are able to be measured accurately. We emphasize that future microlensing surveys need to be capable of characterizing events with small microlensing parallaxes in order to place the most meaningful constraints on the IFMR.

     
    more » « less
  5. Aims. With the aim of finding short-term planetary signals, we investigated the data collected from current high-cadence microlensing surveys. Methods. From this investigation, we found four planetary systems with low planet-to-host mass ratios, including OGLE-2017-BLG-1691L, KMT-2021-BLG-0320L, KMT-2021-BLG-1303L, and KMT-2021-BLG-1554L. Despite the short durations, ranging from a few hours to a couple of days, the planetary signals were clearly detected by the combined data of the lensing surveys. We found that three of the planetary systems have mass ratios on the order of 10 −4 and the other has a mass ratio that is slightly greater than 10 −3 . Results. The estimated masses indicate that all discovered planets have sub-Jovian masses. The planet masses of KMT-2021-BLG-0320Lb, KMT-2021-BLG-1303Lb, and KMT-2021-BLG-1554Lb correspond to ~0.10, ~0.38, and ~0.12 times the mass of the Jupiter, and the mass of OGLE-2017-BLG-1691Lb corresponds to that of the Uranus. The estimated mass of the planet host KMT-2021-BLG-1554L, M host ~ 0.08 M ⊙ , corresponds to the boundary between a star and a brown dwarf. Besides this system, the host stars of the other planetary systems are low-mass stars with masses in the range of ~[0.3–0.6] M ⊙ . The discoveries of the planets fully demonstrate the capability of the current high-cadence microlensing surveys in detecting low-mass planets. 
    more » « less