skip to main content

Title: Three faint-source microlensing planets detected via the resonant-caustic channel
Aims. We conducted a project of reinvestigating the 2017–2019 microlensing data collected by high-cadence surveys with the aim of finding planets that were missed due to the deviations of planetary signals from the typical form of short-term anomalies. Methods. The project led us to find three planets, KMT-2017-BLG-2509Lb, OGLE-2017-BLG-1099Lb, and OGLE-2019-BLG-0299Lb. The lensing light curves of the events have a common characteristic: the planetary signals were produced by the crossings of faint source stars over the resonant caustics formed by giant planets located near the Einstein rings of host stars. Results. For all planetary events, the lensing solutions are uniquely determined without any degeneracy. It is estimated that the host masses are in the range of 0.45 ≲ M ∕ M ⊙ ≲ 0.59, which corresponds to early M to late K dwarfs, and thus the host stars are less massive than the Sun. On the other hand, the planets, with masses in the range of 2.1 ≲ M ∕ M J ≲ 6.2, are heavier than the heaviest planet of the Solar System, that is, Jupiter. The planets in all systems lie beyond the snow lines of the hosts, and thus the discovered planetary systems, together with many other more » microlensing planetary systems, support the idea that massive gas-giant planets are commonplace around low-mass stars. We discuss the role of late-time high-resolution imaging in clarifying resonant-image lenses with very faint sources. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
Publication Date:
Journal Name:
Astronomy & Astrophysics
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Aims. With the aim of finding short-term planetary signals, we investigated the data collected from current high-cadence microlensing surveys. Methods. From this investigation, we found four planetary systems with low planet-to-host mass ratios, including OGLE-2017-BLG-1691L, KMT-2021-BLG-0320L, KMT-2021-BLG-1303L, and KMT-2021-BLG-1554L. Despite the short durations, ranging from a few hours to a couple of days, the planetary signals were clearly detected by the combined data of the lensing surveys. We found that three of the planetary systems have mass ratios on the order of 10 −4 and the other has a mass ratio that is slightly greater than 10 −3 . Results. The estimated masses indicate that all discovered planets have sub-Jovian masses. The planet masses of KMT-2021-BLG-0320Lb, KMT-2021-BLG-1303Lb, and KMT-2021-BLG-1554Lb correspond to ~0.10, ~0.38, and ~0.12 times the mass of the Jupiter, and the mass of OGLE-2017-BLG-1691Lb corresponds to that of the Uranus. The estimated mass of the planet host KMT-2021-BLG-1554L, M host ~ 0.08 M ⊙ , corresponds to the boundary between a star and a brown dwarf. Besides this system, the host stars of the other planetary systems are low-mass stars with masses in the range of ~[0.3–0.6] M ⊙ . The discoveries of the planets fully demonstrate themore »capability of the current high-cadence microlensing surveys in detecting low-mass planets.« less
  2. Aims. The high-magnification microlensing event KMT-2021-BLG-1077 exhibits a subtle and complex anomaly pattern in the region around the peak. We analyze the lensing light curve of the event with the aim of revealing the nature of the anomaly. Methods. We test various models in combination with several interpretations: that the lens is a binary (2L1S), the source is a binary (1L2S), both the lens and source are binaries (2L2S), or the lens is a triple system (3L1S). We search for the best-fit models under the individual interpretations of the lens and source systems. Results. We find that the anomaly cannot be explained by the usual three-body (2L1S and 1L2S) models. The 2L2S model improves the fit compared to the three-body models, but it still leaves noticeable residuals. On the other hand, the 3L1S interpretation yields a model explaining all the major anomalous features in the lensing light curve. According to the 3L1S interpretation, the estimated mass ratios of the lens companions to the primary are ~1.56 × 10 −3 and ~1.75 × 10 −3 , which correspond to ~1.6 and ~1.8 times the Jupiter/Sun mass ratio, respectively, and therefore the lens is a multiplanetary system containing two giant planets. Withmore »the constraints of the event time-scale and angular Einstein radius, it is found that the host of the lens system is a low-mass star of mid-to-late M spectral type with amass of M h = 0.14 −0.07 +0.19 M Θ , and it hosts two gas giant planets with masses of M p1 = 0.22 −0.12 +0.31 M J and M p2 = 0.25 −0.13 +0.35 . The planets lie beyond the snow line of the host with projected separations of a ⊥,p1 = 1.26 −1.08 +1.41 AU and a ⊥,p2 = 0.93 −0.80 +1.05 AU. The planetary system resides in the Galactic bulge at a distance of D L = 8.24 −1.16 +1.02 kpc. The lens of the event is the fifth confirmed multiplanetary system detected by microlensing following OGLE-2006-BLG-109L, OGLE-2012-BLG-0026L, OGLE-2018-BLG-1011L, and OGLE-2019-BLG-0468L.« less
  3. Aims. With the aim of interpreting anomalous lensing events with no suggested models, we conducted a project of reinvestigating microlensing data collected in and before the 2019 season. In this work, we report a multi-planet system, OGLE-2019-BLG-0468L, that was found as a result of this project. Methods. The light curve of the lensing event OGLE-2019-BLG-0468, which consists of three distinctive anomaly features, could not be explained by the usual binary-lens or binary-source interpretations. We find a solution that explains all anomaly features with a triple-lens interpretation, in which the lens is composed of two planets and their host, making the lens the fourth multi-planet system securely found by microlensing. Results. The two planets have masses of ~3.4  M J and ~10.2  M J , and they are orbiting around a G-type star with a mass of ~0.9  M ⊙ and a distance of ~4.4 kpc. The host of the planets is most likely responsible for the light of the baseline object, although the possibility of the host being a companion to the baseline object cannot be ruled out.
  4. Abstract We present Keck/NIRC2 adaptive optics imaging of planetary microlensing event MOA-2007-BLG-400 that resolves the lens star system from the source. We find that the MOA-2007-BLG-400L planetary system consists of a 1.71 ± 0.27 M Jup planet orbiting a 0.69 ± 0.04 M ⊙ K-dwarf host star at a distance of 6.89 ± 0.77 kpc from the Sun. So, this planetary system probably resides in the Galactic bulge. The planet–host star projected separation is only weakly constrained due to the close-wide light-curve degeneracy; the 2 σ projected separation ranges are 0.6–1.0 au and 4.7–7.7 au for close and wide solutions, respectively. This host mass is at the top end of the range of masses predicted by a standard Bayesian analysis. Our Keck follow-up program has now measured lens-source separations for six planetary microlensing events, and five of these six events have host star masses above the median prediction under the assumption that assumes that all stars have an equal chance of hosting planets detectable by microlensing. This suggests that more massive stars may be more likely to host planets of a fixed mass ratio that orbit near or beyond the snow line. These results also indicate the importance of hostmore »star mass measurements for exoplanets found by microlensing. The microlensing survey imaging data from NASA’s Nancy Grace Roman Space Telescope (formerly WFIRST) mission will be doing mass measurements like this for a huge number of planetary events.« less
  5. ABSTRACT We report the complete statistical planetary sample from the prime fields (Γ ≥ 2 h−1) of the 2019 Korea Microlensing Telescope Network (KMTNet) microlensing survey. We develop the optimized KMTNet AnomalyFinder algorithm and apply it to the 2019 KMTNet prime fields. We find a total of 13 homogeneously selected planets and report the analysis of three planetary events, KMT-2019-BLG-(1042,1552,2974). The planet–host mass ratios, q, for the three planetary events are 6.34 × 10−4, 4.89 × 10−3, and 6.18 × 10−4, respectively. A Bayesian analysis indicates the three planets are all cold giant planets beyond the snow line of their host stars. The 13 planets are basically uniform in log q over the range −5.0 < log q < −1.5. This result suggests that the planets below qbreak = 1.7 × 10−4 proposed by the MOA-II survey may be more common than previously believed. This work is an early component of a large project to determine the KMTNet mass-ratio function, and the whole sample of 2016–2019 KMTNet events should contain about 120 planets.