skip to main content

This content will become publicly available on August 1, 2023

Title: Four sub-Jovian-mass planets detected by high-cadence microlensing surveys
Aims. With the aim of finding short-term planetary signals, we investigated the data collected from current high-cadence microlensing surveys. Methods. From this investigation, we found four planetary systems with low planet-to-host mass ratios, including OGLE-2017-BLG-1691L, KMT-2021-BLG-0320L, KMT-2021-BLG-1303L, and KMT-2021-BLG-1554L. Despite the short durations, ranging from a few hours to a couple of days, the planetary signals were clearly detected by the combined data of the lensing surveys. We found that three of the planetary systems have mass ratios on the order of 10 −4 and the other has a mass ratio that is slightly greater than 10 −3 . Results. The estimated masses indicate that all discovered planets have sub-Jovian masses. The planet masses of KMT-2021-BLG-0320Lb, KMT-2021-BLG-1303Lb, and KMT-2021-BLG-1554Lb correspond to ~0.10, ~0.38, and ~0.12 times the mass of the Jupiter, and the mass of OGLE-2017-BLG-1691Lb corresponds to that of the Uranus. The estimated mass of the planet host KMT-2021-BLG-1554L, M host ~ 0.08 M ⊙ , corresponds to the boundary between a star and a brown dwarf. Besides this system, the host stars of the other planetary systems are low-mass stars with masses in the range of ~[0.3–0.6] M ⊙ . The discoveries of the planets fully demonstrate the more » capability of the current high-cadence microlensing surveys in detecting low-mass planets. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
2108414
Publication Date:
NSF-PAR ID:
10350593
Journal Name:
Astronomy & Astrophysics
Volume:
664
Page Range or eLocation-ID:
A33
ISSN:
0004-6361
Sponsoring Org:
National Science Foundation
More Like this
  1. Aims. We conducted a project of reinvestigating the 2017–2019 microlensing data collected by high-cadence surveys with the aim of finding planets that were missed due to the deviations of planetary signals from the typical form of short-term anomalies. Methods. The project led us to find three planets, KMT-2017-BLG-2509Lb, OGLE-2017-BLG-1099Lb, and OGLE-2019-BLG-0299Lb. The lensing light curves of the events have a common characteristic: the planetary signals were produced by the crossings of faint source stars over the resonant caustics formed by giant planets located near the Einstein rings of host stars. Results. For all planetary events, the lensing solutions are uniquely determined without any degeneracy. It is estimated that the host masses are in the range of 0.45 ≲ M ∕ M ⊙ ≲ 0.59, which corresponds to early M to late K dwarfs, and thus the host stars are less massive than the Sun. On the other hand, the planets, with masses in the range of 2.1 ≲ M ∕ M J ≲ 6.2, are heavier than the heaviest planet of the Solar System, that is, Jupiter. The planets in all systems lie beyond the snow lines of the hosts, and thus the discovered planetary systems, together with many othermore »microlensing planetary systems, support the idea that massive gas-giant planets are commonplace around low-mass stars. We discuss the role of late-time high-resolution imaging in clarifying resonant-image lenses with very faint sources.« less
  2. Aims. The light curve of the microlensing event KMT-2021-BLG-0912 exhibits a very short anomaly relative to a single-lens single-source form. We investigate the light curve for the purpose of identifying the origin of the anomaly. Methods. We model the light curve under various interpretations. From this, we find four solutions, in which three solutions are found underthe assumption that the lens is composed of two masses (2L1S models), and the other solution is found under the assumption that the source is comprised of binary stars (1L2S model). The 1L2S model is ruled out based on the contradiction that the faint source companion is bigger than its primary, and one of the 2L1S solutions is excluded from the combination of the poorer fit, blending constraint, and lower overall probability, leaving two surviving solutions with the planet/host mass ratios of q ~ 2.8 × 10 −5 and ~ 1.1 × 10 −5 . A subtle central deviation supports the possibility of a tertiary lens component, either a binary companion to the host with a very large or small separation, or a second planet lying near the Einstein ring, but it is difficult to claim a secure detection due to the marginal improvementmore »of the fit, lack of consistency among different data sets, and difficulty in uniquely specifying the nature of the tertiary component. Results. With the observables of the event, it is estimated that the masses of the planet and host are ~ (6.9  M ⊕ , 0.75  M ⊙ ) according to one solution and~(2.8  M ⊕ , 0.80  M ⊙ ) according to the other, indicating that the planet is a super Earth around a K-type star, regardless of the solution. The fact that 16 (including the one reported in this work) out of 19 microlensing planets with M ≲ 10  M ⊕ were detected during the last 6 yr nicely demonstrates the importance of high-cadence global surveys in detecting very low-mass planets.« less
  3. Aims. The high-magnification microlensing event KMT-2021-BLG-1077 exhibits a subtle and complex anomaly pattern in the region around the peak. We analyze the lensing light curve of the event with the aim of revealing the nature of the anomaly. Methods. We test various models in combination with several interpretations: that the lens is a binary (2L1S), the source is a binary (1L2S), both the lens and source are binaries (2L2S), or the lens is a triple system (3L1S). We search for the best-fit models under the individual interpretations of the lens and source systems. Results. We find that the anomaly cannot be explained by the usual three-body (2L1S and 1L2S) models. The 2L2S model improves the fit compared to the three-body models, but it still leaves noticeable residuals. On the other hand, the 3L1S interpretation yields a model explaining all the major anomalous features in the lensing light curve. According to the 3L1S interpretation, the estimated mass ratios of the lens companions to the primary are ~1.56 × 10 −3 and ~1.75 × 10 −3 , which correspond to ~1.6 and ~1.8 times the Jupiter/Sun mass ratio, respectively, and therefore the lens is a multiplanetary system containing two giant planets. Withmore »the constraints of the event time-scale and angular Einstein radius, it is found that the host of the lens system is a low-mass star of mid-to-late M spectral type with amass of M h = 0.14 −0.07 +0.19 M Θ , and it hosts two gas giant planets with masses of M p1 = 0.22 −0.12 +0.31 M J and M p2 = 0.25 −0.13 +0.35 . The planets lie beyond the snow line of the host with projected separations of a ⊥,p1 = 1.26 −1.08 +1.41 AU and a ⊥,p2 = 0.93 −0.80 +1.05 AU. The planetary system resides in the Galactic bulge at a distance of D L = 8.24 −1.16 +1.02 kpc. The lens of the event is the fifth confirmed multiplanetary system detected by microlensing following OGLE-2006-BLG-109L, OGLE-2012-BLG-0026L, OGLE-2018-BLG-1011L, and OGLE-2019-BLG-0468L.« less
  4. Aims. We reexamine high-magnification microlensing events in the previous data collected by the KMTNet survey with the aim of finding planetary signals that were not noticed before. In this work, we report the planetary system KMT-2018-BLG-1988L, which was found from this investigation. Methods. The planetary signal appears as a deviation with ≲0.2 mag from a single-lens light curve and lasted for about 6 h. The deviation exhibits a pattern of a dip surrounded by weak bumps on both sides of the dip. The analysis of the lensing light curve indicates that the signal is produced by a low-mass-ratio ( q ~ 4 × 10 −5 ) planetary companion located near the Einstein ring of the host star. Results. The mass of the planet, M planet  = 6.8 −3.5 +4.7  M ⊕ and 5.6 −2.8 +3.8  M ⊕ for the two possible solutions, estimated from the Bayesian analysis indicates that the planet is in the regime of a super-Earth. The host of the planet is a disk star with a mass of M host  = 0.47 −0.25 +0.33  M ⊙ and a distance of D L  = 4.2 −.14 +1.8 kpc. KMT-2018-BLG-1988Lb is the 18th known microlensing planet with a mass below the uppermore »limit of a super-Earth. The fact that 15 out of the 18 known microlensing planets with masses ≲10  M ⊕ were detected in the 5 yr following the full operation of the KMTNet survey indicates that the KMTNet database is an important reservoir of very low-mass planets.« less
  5. Aims. The light curve of the microlensing event KMT-2021-BLG-1898 exhibits a short-term central anomaly with double-bump features that cannot be explained by the usual binary-lens or binary-source interpretations. With the aim of interpreting the anomaly, we analyze the lensing light curve under various sophisticated models. Methods. We find that the anomaly is explained by a model, in which both the lens and source are binaries (2L2S model). For this interpretation, the lens is a planetary system with a planet/host mass ratio of q ~ 1.5 × 10 −3 , and the source is a binary composed of a turn off or a subgiant star and a mid K dwarf. The double-bump feature of the anomaly can also be depicted by a triple-lens model (3L1S model), in which the lens is a planetary system containing two planets. Among the two interpretations, the 2L2S model is favored over the 3L1S model not only because it yields a better fit to the data, by ∆ χ 2 = [14.3−18.5], but also the Einstein radii derived independently from the two stars of the binary source result in consistent values. According to the 2L2S interpretation, KMT-2021-BLG-1898 is the third planetary lensing event occurring on amore »binary stellar system, following MOA-2010-BLG-117 and KMT-2018-BLG-1743. Results. Under the 2L2S interpretation, we identify two solutions resulting from the close-wide degeneracy in determining the planet-host separation. From a Bayesian analysis, we estimate that the planet has a mass of ~0.7−0.8 M J , and it orbits an early M dwarf host with a mass of ~0.5 M ⊙ . The projected planet-host separation is ~1.9 AU and ~3.0 AU according to the close and wide solutions, respectively.« less