skip to main content

Title: Sparse identification of multiphase turbulence closures for coupled fluid–particle flows
In this work, model closures of the multiphase Reynolds-averaged Navier–Stokes (RANS) equations are developed for homogeneous, fully developed gas–particle flows. To date, the majority of RANS closures are based on extensions of single-phase turbulence models, which fail to capture complex two-phase flow dynamics across dilute and dense regimes, especially when two-way coupling between the phases is important. In the present study, particles settle under gravity in an unbounded viscous fluid. At sufficient mass loadings, interphase momentum exchange between the phases results in the spontaneous generation of particle clusters that sustain velocity fluctuations in the fluid. Data generated from Eulerian–Lagrangian simulations are used in a sparse regression method for model closure that ensures form invariance. Particular attention is paid to modelling the unclosed terms unique to the multiphase RANS equations (drag production, drag exchange, pressure strain and viscous dissipation). A minimal set of tensors is presented that serve as the basis for modelling. It is found that sparse regression identifies compact, algebraic models that are accurate across flow conditions and robust to sparse training data.
Authors:
; ;
Award ID(s):
1846054
Publication Date:
NSF-PAR ID:
10285288
Journal Name:
Journal of Fluid Mechanics
Volume:
914
ISSN:
0022-1120
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper is on an Eulerian-Eulerian (EE) approach that utilizes Godunov’s scheme to deal with a running shock that interacts with a cloud of particles. The EE approach treats both carrier phase (fluid phase) and dispersed phase (particle phase) in the Eulerian frame. In this work, the fluid equations are the Euler equations for the compressible gas while the particle equations are based on a recently developed model to solve for the number density, velocity, temperature, particle sub-grid scale stresses, and particle sub-grid scale heat fluxes. The carrier and dispersed phases exchange momentum and heat, which are modeled through incorporating source terms in their equations. Carrier and dispersed phase equation form a hyperbolic set of differential equations, which are numerically solved with Godunov’s scheme. The numerical solutions are obtained in this work for a two-dimensional normal running shock interacting with a rectangular cloud of particles. The results generated by the EE approach were compared against the results that were generated by a well-stablished Eulerian-Lagragian (EL) approach that treats the carrier phase in an Eulerian frame, while does the dispersed phase in a Lagrangian framework where individuals particles are traced and solved. For the considered configuration, the EE approach reproduced themore »EL results with a very good accuracy.« less
  2. Mechanical properties of cellular structures, including the cell cytoskeleton, are increasingly used as biomarkers for disease diagnosis and fundamental studies in cell biology. Recent experiments suggest that the cell cytoskeleton and its permeating cytosol, can be described as a poroelastic (PE) material. Biot theory is the standard model used to describe PE materials. Yet, this theory does not account for the fluid viscous stress, which can lead to inaccurate predictions of the mechanics in the dilute filamentous network of the cytoskeleton. Here, we adopt a two-phase model that extends Biot theory by including the fluid viscous stresses in the fluid's momentum equation. We use generalized linear viscoelastic (VE) constitutive equations to describe the permeating fluid and the network stresses and assume a constant friction coefficient that couples the fluid and network displacement fields. As the first step in developing a computational framework for solving the resulting equations, we derive closed-form general solutions of the fluid and network displacement fields in spherical coordinates. To demonstrate the applicability of our results, we study the motion of a rigid sphere moving under a constant force inside a PE medium, composed of a linear elastic network and a Newtonian fluid. We find that themore »network compressibility introduces a slow relaxation of the sphere and a non-monotonic network displacements with time along the direction of the applied force. These novel features cannot be predicted if VE constitutive equation is used for the medium. We show that our results can be applied to particle-tracking microrheology to differentiate between PE and VE materials and to independently measure the permeability and VE properties of the fluid and the network phases.« less
  3. This study presents the first 3D two-way coupled fluid structure interaction (FSI) simulation of a hybrid anechoic wind tunnel (HAWT) test section with modeling all important effects, such as turbulence, Kevlar wall porosity and deflection, and reveals for the first time the complete 3D flow structure associated with a lifting model placed into a HAWT. The Kevlar deflections are captured using finite element analysis (FEA) with shell elements operated under a membrane condition. Three-dimensional RANS CFD simulations are used to resolve the flow field. Aerodynamic experimental results are available and are compared against the FSI results. Quantitatively, the pressure coefficients on the airfoil are in good agreement with experimental results. The lift coefficient was slightly underpredicted while the drag was overpredicted by the CFD simulations. The flow structure downstream of the airfoil showed good agreement with the experiments, particularly over the wind tunnel walls where the Kevlar windows interact with the flow field. A discrepancy between previous experimental observations and juncture flow-induced vortices at the ends of the airfoil is found to stem from the limited ability of turbulence models. The qualitative behavior of the flow, including airfoil pressures and cross-sectional flow structure is well captured in the CFD. Frommore »the structural side, the behavior of the Kevlar windows and the flow developing over them is closely related to the aerodynamic pressure field induced by the airfoil. The Kevlar displacement and the transpiration velocity across the material is dominated by flow blockage effects, generated aerodynamic lift, and the wake of the airfoil. The airfoil wake increases the Kevlar window displacement, which was previously not resolved by two-dimensional panel-method simulations. The static pressure distribution over the Kevlar windows is symmetrical about the tunnel mid-height, confirming a dominantly two-dimensional flow field.« less
  4. The drag force on a spherical intruder in dense granular shear flows is studied using discrete element method simulations. Three regimes of the intruder dynamics are observed depending on the magnitude of the drag force (or the corresponding intruder velocity) and the flow inertial number: a fluctuation-dominated regime for small drag forces; a viscous regime for intermediate drag forces; and an inertial (cavity formation) regime for large drag forces. The transition from the viscous regime (linear force-velocity relation) to the inertial regime (quadratic force-velocity relation) depends further on the inertial number. Despite these distinct intruder dynamics, we find a quantitative similarity between the intruder drag in granular shear flows and the Stokesian drag on a sphere in a viscous fluid for intruder Reynolds numbers spanning five orders of magnitude. Beyond this first-order description, a modified Stokes drag model is developed that accounts for the secondary dependence of the drag coefficient on the inertial number and the intruder size and density ratios. When the drag model is coupled with a segregation force model for intruders in dense granular flows, it is possible to predict the velocity of gravity-driven segregation of an intruder particle in shear flow simulations.
  5. The relative velocities and positions of monodisperse high-inertia particle pairs in isotropic turbulence are studied using direct numerical simulations (DNS), as well as Langevin simulations (LS) based on a probability density function (PDF) kinetic model for pair relative motion. In a prior study (Rani et al. , J. Fluid Mech. , vol. 756, 2014, pp. 870–902), the authors developed a stochastic theory that involved deriving closures in the limit of high Stokes number for the diffusivity tensor in the PDF equation for monodisperse particle pairs. The diffusivity contained the time integral of the Eulerian two-time correlation of fluid relative velocities seen by pairs that are nearly stationary. The two-time correlation was analytically resolved through the approximation that the temporal change in the fluid relative velocities seen by a pair occurs principally due to the advection of smaller eddies past the pair by large-scale eddies. Accordingly, two diffusivity expressions were obtained based on whether the pair centre of mass remained fixed during flow time scales, or moved in response to integral-scale eddies. In the current study, a quantitative analysis of the (Rani et al. 2014) stochastic theory is performed through a comparison of the pair statistics obtained using LS with those from DNS.more »LS consist of evolving the Langevin equations for pair separation and relative velocity, which is statistically equivalent to solving the classical Fokker–Planck form of the pair PDF equation. Langevin simulations of particle-pair dispersion were performed using three closure forms of the diffusivity – i.e. the one containing the time integral of the Eulerian two-time correlation of the seen fluid relative velocities and the two analytical diffusivity expressions. In the first closure form, the two-time correlation was computed using DNS of forced isotropic turbulence laden with stationary particles. The two analytical closure forms have the advantage that they can be evaluated using a model for the turbulence energy spectrum that closely matched the DNS spectrum. The three diffusivities are analysed to quantify the effects of the approximations made in deriving them. Pair relative-motion statistics obtained from the three sets of Langevin simulations are compared with the results from the DNS of (moving) particle-laden forced isotropic turbulence for $St_{\unicode[STIX]{x1D702}}=10,20,40,80$ and $Re_{\unicode[STIX]{x1D706}}=76,131$ . Here, $St_{\unicode[STIX]{x1D702}}$ is the particle Stokes number based on the Kolmogorov time scale and $Re_{\unicode[STIX]{x1D706}}$  is the Taylor micro-scale Reynolds number. Statistics such as the radial distribution function (RDF), the variance and kurtosis of particle-pair relative velocities and the particle collision kernel were computed using both Langevin and DNS runs, and compared. The RDFs from the stochastic runs were in good agreement with those from the DNS. Also computed were the PDFs $\unicode[STIX]{x1D6FA}(U|r)$ and $\unicode[STIX]{x1D6FA}(U_{r}|r)$ of relative velocity $U$ and of the radial component of relative velocity $U_{r}$ respectively, both PDFs conditioned on separation $r$ . The first closure form, involving the Eulerian two-time correlation of fluid relative velocities, showed the best agreement with the DNS results for the PDFs.« less