skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sparse identification of multiphase turbulence closures for coupled fluid–particle flows
In this work, model closures of the multiphase Reynolds-averaged Navier–Stokes (RANS) equations are developed for homogeneous, fully developed gas–particle flows. To date, the majority of RANS closures are based on extensions of single-phase turbulence models, which fail to capture complex two-phase flow dynamics across dilute and dense regimes, especially when two-way coupling between the phases is important. In the present study, particles settle under gravity in an unbounded viscous fluid. At sufficient mass loadings, interphase momentum exchange between the phases results in the spontaneous generation of particle clusters that sustain velocity fluctuations in the fluid. Data generated from Eulerian–Lagrangian simulations are used in a sparse regression method for model closure that ensures form invariance. Particular attention is paid to modelling the unclosed terms unique to the multiphase RANS equations (drag production, drag exchange, pressure strain and viscous dissipation). A minimal set of tensors is presented that serve as the basis for modelling. It is found that sparse regression identifies compact, algebraic models that are accurate across flow conditions and robust to sparse training data.  more » « less
Award ID(s):
1846054
PAR ID:
10285288
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
914
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper is on an Eulerian-Eulerian (EE) approach that utilizes Godunov’s scheme to deal with a running shock that interacts with a cloud of particles. The EE approach treats both carrier phase (fluid phase) and dispersed phase (particle phase) in the Eulerian frame. In this work, the fluid equations are the Euler equations for the compressible gas while the particle equations are based on a recently developed model to solve for the number density, velocity, temperature, particle sub-grid scale stresses, and particle sub-grid scale heat fluxes. The carrier and dispersed phases exchange momentum and heat, which are modeled through incorporating source terms in their equations. Carrier and dispersed phase equation form a hyperbolic set of differential equations, which are numerically solved with Godunov’s scheme. The numerical solutions are obtained in this work for a two-dimensional normal running shock interacting with a rectangular cloud of particles. The results generated by the EE approach were compared against the results that were generated by a well-stablished Eulerian-Lagragian (EL) approach that treats the carrier phase in an Eulerian frame, while does the dispersed phase in a Lagrangian framework where individuals particles are traced and solved. For the considered configuration, the EE approach reproduced the EL results with a very good accuracy. 
    more » « less
  2. The drag force on a spherical intruder in dense granular shear flows is studied using discrete element method simulations. Three regimes of the intruder dynamics are observed depending on the magnitude of the drag force (or the corresponding intruder velocity) and the flow inertial number: a fluctuation-dominated regime for small drag forces; a viscous regime for intermediate drag forces; and an inertial (cavity formation) regime for large drag forces. The transition from the viscous regime (linear force-velocity relation) to the inertial regime (quadratic force-velocity relation) depends further on the inertial number. Despite these distinct intruder dynamics, we find a quantitative similarity between the intruder drag in granular shear flows and the Stokesian drag on a sphere in a viscous fluid for intruder Reynolds numbers spanning five orders of magnitude. Beyond this first-order description, a modified Stokes drag model is developed that accounts for the secondary dependence of the drag coefficient on the inertial number and the intruder size and density ratios. When the drag model is coupled with a segregation force model for intruders in dense granular flows, it is possible to predict the velocity of gravity-driven segregation of an intruder particle in shear flow simulations. 
    more » « less
  3. Abstract We present a new computational fluid dynamics approach for simulating two‐phase flow in hybrid systems containing solid‐free regions and deformable porous matrices. Our approach is based on the derivation of a unique set of volume‐averaged partial differential equations that asymptotically approach the Navier‐Stokes Volume‐of‐Fluid equations in solid‐free regions and multiphase Biot Theory in porous regions. The resulting equations extend our recently developed Darcy‐Brinkman‐Biot framework to multiphase flow. Through careful consideration of interfacial dynamics (relative permeability and capillary effects) and extensive benchmarking, we show that the resulting model accurately captures the strong two‐way coupling that is often exhibited between multiple fluids and deformable porous media. Thus, it can be used to represent flow‐induced material deformation (swelling, compression) and failure (cracking, fracturing). The model's open‐source numerical implementation,hybridBiotInterFoam, effectively marks the extension of computational fluid mechanics into modeling multiscale multiphase flow in deformable porous systems. The versatility of the solver is illustrated through applications related to material failure in poroelastic coastal barriers and surface deformation due to fluid injection in poro‐visco‐plastic systems. 
    more » « less
  4. This study discusses turbulent suspension flows of non-Brownian, non-colloidal, neutrally buoyant and rigid spherical particles in a Newtonian fluid over porous media with particles too large to penetrate and move through the porous layer. We consider suspension flows with the solid volume fraction $${{\varPhi _b}}$$ ranging from 0 to 0.2, and different wall permeabilities, while porosity is constant at 0.6. Direct numerical simulations with an immersed boundary method are employed to resolve the particles and flow phase, with the volume-averaged Navier–Stokes equations modelling the flow within the porous layer. The results show that in the presence of particles in the free-flow region, the mean velocity and the concentration profiles are altered with increasing porous layer permeability because of the variations in the slip velocity and wall-normal fluctuations at the suspension-porous interface. Furthermore, we show that variations in the stress condition at the interface significantly affect the particle near-wall dynamics and migration toward the channel core, thereby inducing large modulations of the overall flow drag. At the highest volume fraction investigated here, $${{\varPhi _b}}= 0.2$$ , the velocity fluctuations and the Reynolds shear stress are found to decrease, and the overall drag increases due to the increase in the particle-induced stresses. 
    more » « less
  5. We report a method to predict equilibrium concentration profiles of hard ellipses in nonuniform fields, including multiphase equilibria of fluid, nematic, and crystal phases. Our model is based on a balance of osmotic pressure and field mediated forces by employing the local density approximation. Implementation of this model requires development of accurate equations of state for each phase as a function of hard ellipse aspect ratio in the range k = 1–9. The predicted density profiles display overall good agreement with Monte Carlo simulations for hard ellipse aspect ratios k = 2, 4, and 6 in gravitational and electric fields with fluid–nematic, fluid–crystal, and fluid–nematic–crystal multiphase equilibria. The profiles of local order parameters for positional and orientational order display good agreement with values expected for bulk homogeneous hard ellipses in the same density ranges. Small discrepancies between predictions and simulations are observed at crystal–nematic and crystal–fluid interfaces due to limitations of the local density approximation, finite system sizes, and uniform periodic boundary conditions. The ability of the model to capture multiphase equilibria of hard ellipses in nonuniform fields as a function of particle aspect ratio provides a basis to control anisotropic particle microstructure on interfacial energy landscapes in diverse materials and applications. 
    more » « less