Bacterial infections pose a serious public health concern, especially when an infectious disease has a multidrug resistant causative agent. Such multidrug resistant bacteria can compromise the clinical utility of major chemotherapeutic antimicrobial agents. Drug and multidrug resistant bacteria harbor several distinct molecular mechanisms for resistance. Bacterial antimicrobial agent efflux pumps represent a major mechanism of clinical resistance. The major facilitator superfamily (MFS) is one of the largest groups of solute transporters to date and includes a significant number of bacterial drug and multidrug efflux pumps. We review recent work on the modulation of multidrug efflux pumps, paying special attention to those transporters belonging primarily to the MFS.
more »
« less
Isolating the effects of gate layer permeability and sorbent density on the performance of solute-selective polymeric ion pumps
The design of polymeric ion pumps that isolate target solutes from complex milieus is examined. The analysis shows that current materials possess the properties needed to fabricate polymeric ions pumps that outperform conventional membrane systems.
more »
« less
- Award ID(s):
- 2147605
- PAR ID:
- 10481591
- Publisher / Repository:
- Royal Society of Chemsitry
- Date Published:
- Journal Name:
- Molecular Systems Design & Engineering
- Volume:
- 8
- Issue:
- 11
- ISSN:
- 2058-9689
- Page Range / eLocation ID:
- 1418 to 1429
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Zhou, Ning-Yi (Ed.)ABSTRACT Multidrug efflux pumps are the frontline defense mechanisms of Gram-negative bacteria, yet little is known of their relative fitness trade-offs under gut conditions such as low pH and the presence of antimicrobial food molecules. Low pH contributes to the proton-motive force (PMF) that drives most efflux pumps. We show how the PMF-dependent pumps AcrAB-TolC, MdtEF-TolC, and EmrAB-TolC undergo selection at low pH and in the presence of membrane-permeant phytochemicals. Competition assays were performed by flow cytometry of co-culturedEscherichia coliK-12 strains possessing or lacking a given pump complex. All three pumps showed negative selection under conditions that deplete PMF (pH 5.5 with carbonyl cyanide 3-chlorophenylhydrazone or at pH 8.0). At pH 5.5, selection against AcrAB-TolC was increased by aromatic acids, alcohols, and related phytochemicals such as methyl salicylate. The degree of fitness cost for AcrA was correlated with the phytochemical’s lipophilicity (logP). Methyl salicylate and salicylamide selected strongly against AcrA, without genetic induction of drug resistance regulons. MdtEF-TolC and EmrAB-TolC each had a fitness cost at pH 5.5, but salicylate or benzoate made the fitness contribution positive. Pump fitness effects were not explained by gene expression (measured by digital PCR). Between pH 5.5 and 8.0,acrAandemrAwere upregulated in the log phase, whereasmdtEexpression was upregulated in the transition-to-stationary phase and at pH 5.5 in the log phase. Methyl salicylate did not affect pump gene expression. Our results suggest that lipophilic non-acidic molecules select against a major efflux pump without inducing antibiotic resistance regulons.IMPORTANCEFor drugs that are administered orally, we need to understand how ingested phytochemicals modulate drug resistance in our gut microbiome. Bacteria maintain low-level resistance by proton-motive force (PMF)-driven pumps that efflux many different antibiotics and cell waste products. These pumps play a key role in bacterial defense by conferring resistance to antimicrobial agents at first exposure while providing time for a pathogen to evolve resistance to higher levels of the antibiotic exposed. Nevertheless, efflux pumps confer energetic costs due to gene expression and pump energy expense. The bacterial PMF includes the transmembrane pH difference (ΔpH), which may be depleted by permeant acids and membrane disruptors. Understanding the fitness costs of efflux pumps may enable us to develop resistance breakers, that is, molecules that work together with antibiotics to potentiate their effect. Non-acidic aromatic molecules have the advantage that they avoid the Mar-dependent induction of regulons conferring other forms of drug resistance. We show that different pumps have distinct selection criteria, and we identified non-acidic aromatic molecules as promising candidates for drug resistance breakers.more » « less
-
Heating buildings using fossil fuels such as natural gas, propane and oil makes up a significant proportion of the aggregate carbon emissions every year. Because of this, there is a strong interest in decarbonizing residential heating systems using new technologies such as electric heat pumps. In this paper, we conduct a data-driven optimization study to analyze the potential of replacing gas heating with electric heat pumps to reduce CO 2 emission in a city-wide distribution grid. We conduct an in-depth analysis of gas consumption in the city and the resulting carbon emissions. We then present a flexible multi-objective optimization (MOO) framework that optimizes carbon emission reduction while also maximizing other aspects of the energy transition such as carbon-efficiency, and minimizing energy inefficiency in buildings. Our results show that replacing gas with electric heat pumps has the potential to cut carbon emissions by up to 81%. We also show that optimizing for other aspects such as carbon-efficiency and energy inefficiency introduces tradeoffs with carbon emission reduction that must be considered during transition. Finally, we present a detailed analysis of the implication of proposed transition strategies on the household energy consumption and utility bills, electric grid upgrades, and decarbonization policies. We compute the additional energy demand from electric heat pumps at the household as well as the transformer level and discuss how our results can inform decarbonization policies at city scale.more » « less
-
Abstract Often, fluidic soft robots are driven by large pneumatic or low-bandwidth hydraulic systems which struggle to meet performance objectives. This research presents the design of two morphologies of compact, positive displacement hydraulic pumps designed to act as power supplies for fluidic soft robots. These hydraulic pumps were designed to leverage additive manufacturing technology, creating cost-effective, yet volumetrically powerful units. The operational bandwidth of these pumps (> 10Hz) was substantially higher than the natural frequency of most elastomer-based soft robots (1–5Hz), allowing high control authority. These designs allow for highly scalable pumps, with performance documented in the paper. Due to the 3D printed nature of the pump components, manufacture cost is greatly reduced when compared to machined components. Each was tested driving various soft robotic actuators, demonstrating high-bandwidth, yet precise operation. With their minimal size, these pumps are candidates for un-tethered mobile soft robots, and their low weight and low noise allows them to be carried on the body for robotic actuators used in mobility rehabilitation.more » « less
-
Summary Two types of tonoplast proton pumps, H+‐pyrophosphatase (V‐PPase) and the H+‐ATPase (V‐ATPase), establish the proton gradient that powers molecular traffic across the tonoplast thereby facilitating turgor regulation and nutrient homeostasis. However, how proton pumps regulate development remains unclear.In this study, we investigated the function of two types of proton pumps in Arabidopsis embryo development and pattern formation. While disruption of either V‐PPase or V‐ATPase had no obvious effect on plant embryo development, knocking out both resulted in severe defects in embryo pattern formation from the early stage.While the first division in wild‐type zygote was asymmetrical, a nearly symmetrical division occurred in the mutant, followed by abnormal pattern formation at all stages of embryo development. The embryonic defects were accompanied by dramatic differences in vacuole morphology and distribution, as well as disturbed localisation of PIN1. The development of mutant cotyledons and root, and the auxin response of mutant seedlings supported the hypothesis that mutants lacking tonoplast proton pumps were defective in auxin transport and distribution.Taking together, we proposed that two tonoplast proton pumps are required for vacuole morphology and PIN1 localisation, thereby controlling vacuole and auxin‐related developmental processes in Arabidopsis embryos and seedlings.more » « less
An official website of the United States government

