Often, fluidic soft robots are driven by large pneumatic or low-bandwidth hydraulic systems which struggle to meet performance objectives. This research presents the design of two morphologies of compact, positive displacement hydraulic pumps designed to act as power supplies for fluidic soft robots. These hydraulic pumps were designed to leverage additive manufacturing technology, creating cost-effective, yet volumetrically powerful units. The operational bandwidth of these pumps (> 10Hz) was substantially higher than the natural frequency of most elastomer-based soft robots (1–5Hz), allowing high control authority.
These designs allow for highly scalable pumps, with performance documented in the paper. Due to the 3D printed nature of the pump components, manufacture cost is greatly reduced when compared to machined components. Each was tested driving various soft robotic actuators, demonstrating high-bandwidth, yet precise operation.
With their minimal size, these pumps are candidates for un-tethered mobile soft robots, and their low weight and low noise allows them to be carried on the body for robotic actuators used in mobility rehabilitation.
more » « less- Award ID(s):
- 1935278
- PAR ID:
- 10480708
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- Journal Name:
- Proceedings of the ASMEBATH Symposium on Fluid Power and Motion Control
- ISSN:
- 2475-7004
- ISBN:
- 978-0-7918-8743-1
- Format(s):
- Medium: X
- Location:
- Sarasota, Florida, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
Sensing and actuation are intricately connected in soft robotics, where contact may change actuator mechanics and robot behavior. To improve soft robotic control and performance, proprioception and contact sensors are needed to report robot state without altering actuation mechanics or introducing bulky, rigid components. For bioinspired McKibben-style fluidic actuators, prior work in sensing has focused on sensing the strain of the actuator by embedding sensors in the actuator bladder during fabrication, or by adhering sensors to the actuator surface after fabrication. However, material property mismatches between sensors and actuators can impede actuator performance, and many soft sensors available for use with fluidic actuators rely on costly or labor-intensive fabrication methods. Here, we demonstrate a low-cost and easy-to manufacture-tubular liquid metal strain sensor for use with soft actuators that can be used to detect actuator strain and contact between the actuator and external objects. The sensor is flexible, can be fabricated with commercial-off-the-shelf components, and can be easily integrated with existing soft actuators to supplement sensing, regardless of actuator shape or size. Furthermore, the soft tubular strain sensor exhibits low hysteresis and high sensitivity. The approach presented in this work provides a low-cost, soft sensing solution for broad application in soft robotics.more » « less
-
null (Ed.)Regulation systems for fluid-driven soft robots predominantly consist of inflexible and bulky components. These rigid structures considerably limit the adaptability and mobility of these robots. Soft valves in various forms for fluidic actuators have been developed, primarily fluidically or electrically driven. However, fluidic soft valves require external pressure sources that limit robot locomotion. State-of-the-art electrostatic valves are unable to modulate pressure beyond 3.5 kPa with a sufficient flow rate (>6 mL⋅min −1 ). In this work, we present an electrically powered soft valve for hydraulic actuators with mesoscale channels based on a different class of ultrahigh-power density dynamic dielectric elastomer actuators. The dynamic dielectric elastomer actuators (DEAs) are actuated at 500 Hz or above. These DEAs generate 300% higher blocked force compared with the dynamic DEAs in previous works and their loaded power density reaches 290 W⋅kg −1 at operating conditions. The soft valves are developed with compact (7 mm tall) and lightweight (0.35 g) dynamic DEAs, and they allow effective control of up to 51 kPa of pressure and a 40 mL⋅min −1 flow rate with a response time less than 0.1 s. The valves can also tune flow rates based on their driving voltages. Using the DEA soft valves, we demonstrate control of hydraulic actuators of different volumes and achieve independent control of multiple actuators powered by a single pressure source. This compact and lightweight DEA valve is capable of unprecedented electrical control of hydraulic actuators, showing the potential for future onboard motion control of soft fluid-driven robots.more » « less
-
null (Ed.)The emergence of soft robots has presented new challenges associated with controlling the underlying fluidics of such systems. Here, we introduce a strategy for additively manufacturing unified soft robots comprising fully integrated fluidic circuitry in a single print run via PolyJet three-dimensional (3D) printing. We explore the efficacy of this approach for soft robots designed to leverage novel 3D fluidic circuit elements—e.g., fluidic diodes, “normally closed” transistors, and “normally open” transistors with geometrically tunable pressure-gain functionalities—to operate in response to fluidic analogs of conventional electronic signals, including constant-flow [“direct current (DC)”], “alternating current (AC)”–inspired, and preprogrammed aperiodic (“variable current”) input conditions. By enabling fully integrated soft robotic entities (composed of soft actuators, fluidic circuitry, and body features) to be rapidly disseminated, modified on demand, and 3D-printed in a single run, the presented design and additive manufacturing strategy offers unique promise to catalyze new classes of soft robots.more » « less
-
Abstract Elastomer‐granule composites have been used to switch between soft and stiff states by applying negative pressure differentials that cause the membrane to squeeze the internal grains, inducing dilation and jamming. Applications of this phenomenon have ranged from universal gripping to adaptive mobility. Previously, the combination of this jamming phenomenon with the ability to transport grains across multiple soft actuators for shape morphing has not yet been demonstrated. In this paper, the authors demonstrate the use of hollow glass spheres as granular media that functions as a jammable “quasi‐hydraulic” fluid in a fluidic elastomeric actuator that better mimics a key featur of animal musculature: independent control over i) isotonic actuation for motion; and ii) isometric actuation for stiffening without shape change. To best implement the quasi‐hydraulic fluid, the authors design and build a fluidic device. Leveraging this combination of physical properties creates a new option for fluidic actuation that allows higher specific stiffness actuators using lower volumetric flow rates in addition to independent control over shape and stiffness. These features are showcased in a robotic catcher's mitt by stiffening the fluid in the glove's open configuration for catching, unjamming the media, then pumping additional fluid to the mitt to inflate and grasp.
-
Here, we present a multimodal, lamprey-inspired, 3D printed soft fluidic robot/actuator based on an antagonistic pneunet architecture. The Pacific Lamprey is a unique fish which is able to climb wetted vertical surfaces using its suction-cup mouth and snake-like morphology. The continuum structure of these fish lends itself to soft robots, given their ability to form continuous bends. Additionally, the high gravimetric and volumetric power density attainable by soft actuators make them good candidates for climbing robots. Fluidic soft robots are often limited in the forces they can exert due to limitations on their actuation pressure. This actuator is able to operate at relatively high pressures (for soft robots) of 756 kPa (95 psig) with a −3 dB bandwidth of 2.23 Hz to climb at rates exceeding 18 cm/s. The robot is capable of progression on a vertical surface using a compliant microspine attachment as the functional equivalent of the lamprey’s more complex suction-cup mouth. The paper also presents the details of the 3D-printed manufacturing of this actuator/robot.more » « less